Page 266 - 《高原气象》2022年第6期
P. 266
6 期 王 丹等:面向数值同化应用的L波段秒级探空资料的质量控制方法研究 1629
王丹,王金成,田伟红,等,2020. 往返式探空观测资料的质量控制 同化应用试验[J]. 气象,41(6):695-706. DOI:10. 7519/j.
及不确定性分析[J]. 大气科学,44(4):865−884. DOI:10. issn. 1000-0526. 2015. 06. 004.
3878/j. issn. 1006-9895. 1912. 19203. 姚雯,马颖,2015. 秒级探空数据随机误差评估[J]. 应用气象学
王金成,龚建东,赵滨,2015. 一种新的 COSMIC 大气折射率资料 报,26(5):600-609. DOI:10. 11898/1001-7313. 20150509.
观测误差估计方法及在 GRAPES 全球三维变分同化中的应用 于晓晶,杜娟,王敏仲,等,2018. 青藏高原新增探空资料同化对南
[J]. 气象学报,73(1):142-158. DOI:http://dx. doi. org/10. 疆夏季降水预报的影响[J]. 高原气象,37(1):13-27. DOI:
11676/qxxb2015. 005. 10. 7522/j. issn. 1000-0534. 2017. 00034.
王瑞文,龚建东,韩威,等,2017. AMDAR 温度资料的偏差订正及 远芳,2016. 中国高空 L 波段秒级观测基础数据集(V1. 0)评估报告
对 GRAPES 系统的影响[J]. 高原气象,36(5):1346-1356. [R]. 北京:中国气象局,1-24.
DOI:10. 7522/j. issn. 1000-0534. 2016. 00124. 中国气象局,2010. 常规高空气象观测业务规范[M]. 北京:气象出
王轶,徐枝芳,范广洲,2013. 基于EOF 2 m温度质量控制方法研究 版社.
[J]. 高原气象,32(2):564-574. DOI:10. 7522/j. issn. 1000- 仲跻芹,Guo Y R,张京江,2017. 华北地区地基 GPS 天顶总延迟观
0534. 2012. 00054. 测的质量控制和同化应用研究[J]. 气象学报,75(1):147-
吴蕾,陈洪滨,康雪,2014. 风廓线雷达与 L波段雷达探空测风对比 164. DOI:10. 11676/qxxb2017. 010.
分析[J]. 气象科技,42(2):225-230. DOI:10. 3969/j. issn. 庄照荣,薛纪善,陆慧娟,等,2014. 全球 GRAPES等压面三维变分
1671-6345. 2014. 02. 008. 分析预报循环系统及试验[J]. 高原气象,33(3):666-674.
姚爽,陈敏,王建捷,2015. L 波段分钟数据在 WRF 模式中的变分 DOI:10. 7522/j. issn. 1000-0534. 2013. 00039.
Research on a Quality Control Method for L Band Second-Level
Radiosonde toward Assimilation Applications
1,2
WANG Dan ,WANG Jincheng ,TIAN Weihong 1,2
1,2
(1. Center for Earth System Modeling and Prediction of CMA,Beijing 100081,China;
2. National Metrological Center of CMA,Beijing 100081,China)
Abstract:Since 2003,the World Meteorological Organization(WMO)proposed and coordinated a switch from
traditional radiosonde format(TAC code)to second-resolution binary(BUFR)report,which leads the assimila‐
tion of second radiosonde data in numerical prediction model becoming the future trend. Data quality control is a
key and basic work before assimilation application. In addition,the observational error characteristics of Lband
second-level radiosonde are significantly different from that of conventional radiosonde. Therefore,a two-step
quality control method for assimilation application is developed in this paper. The first step integrates convention‐
al radiosonde quality control procedures and inserts several additional steps according to the data characteristics
of second-level radiosonde,which aims at eliminating human-observation errors as much as possible. The second
step introduces a dynamic blacklist checking module into the assimilation system,at the same time remaining the
old OMB(observation minus background)check method,so as to control the representative deviation between
the observation and the model background. By comparing and analyzing the statistical characteristics of the obser‐
vation samples before and after the quality control procedure,and combining them with the actual assimilation
analysis results of the NWP model,the rationality of the two-step quality control procedure has been comprehen‐
sively verified. It reveals that the data anomaly is greatly reduced after the two-step quality control procedure,at
the same time the OMB is closer to a Gaussian distribution. Moreover,the validity of data assimilation is en‐
hanced leading to a better assimilation analysis effect. The work lays a foundation for the future operational appli‐
cation of L-band second-level radiosonde data in GRAPES(Global/Regional Assimilation and Prediction Sys‐
tem)model.
Key words:Lband second-level radiosonde;quality control;GRAPES model;data assimilation