Page 122 - 《高原气象》2022年第1期
P. 122
高 原 气 象 41 卷
120
1079. DOI:10. 1175/JAM2500. 1. 290. DOI:10. 1175/2007JAMC1547. 1.
Li M,Liu X,Shu L,et al,2021. Variations in surface roughness of Yang K,Chen Y Y,Qin J,2009. Some practical notes on the land sur‐
heterogeneous surfaces in the Nagqu area of the Tibetan Plateau face modeling in the Tibetan Plateau[J]. Hydrology and Earth
[J]. Hydrology and Earth System Sciences,25(5):2915-2930. System Sciences,13,5(2009-05-27),13(5):687-701. DOI:
DOI:10. 5194/hess-25-2915-2021. 10. 5194/hess-13-687-2009.
Ma Y,Fan S,Ishikawa H,et al,2005. Diurnal and inter-monthly Zeng X,Barlage M,Dickinson R E,et al,2005. Treatment of under‐
variation of land surface heat fluxes over the central Tibetan Pla‐ canopy turbulence in land models[J]. Journal of Climate,18
teau area[J]. Theoretical and Applied Climatology,80(2-4): (23):5086-5094. DOI:10. 1175/JCLI3595. 1.
259-273. DOI:10. 1007/s00704-004-0104-1. Zeng X,Dickinson R E,1998. Effect of surface sublayer on surface
Massman W J,Weil J C,1999. An analytical one-dimensional second- skin temperature and fluxes[J]. Journal of Climate,11(4):537-
order closure model of turbulence statistics and the Lagrangian 550. DOI: 10. 1175/1520-0442(1998)011<0537: EOSSOS>
time scale within and above plant canopies of arbitrary structure 2. 0. CO;2.
[J]. Boundary-Layer Meteorology,91(1):81-107. DOI:10. Zeng X,Wang A,2007. Consistent parameterization of roughness
1023/A:1001810204560. length and displacement height for sparse and dense canopies in
Niu G Y,Yang Z L,Mitchell K E,et al,2011. The community Noah land models[J]. Journal of Hydrometeorology,8(4):730-737.
land surface model with multiparameterization options(Noah ‐ DOI:10. 1175/JHM607. 1.
MP):1. Model description and evaluation with local‐scale mea‐ Zeng X,Wang Z,Wang A,2012. Surface skin temperature and the in‐
surements[J]. Journal of Geophysical Research:Atmospheres, terplay between sensible and ground heat fluxes over arid regions
116(D12). DOI:10. 1029/2010JD015139. [J]. Journal of Hydrometeorology,13(4):1359-1370. DOI:
Sun G,Hu Z,Wang J,et al,2016. Upscaling analysis of aerodynam‐ 10. 1175/JHM-D-11-0117. 1.
ic roughness length based on in situ data at different spatial scales Zheng D,Van Der Velde R,Su Z,et al,2014. Assessment of rough‐
and remote sensing in north Tibetan Plateau[J]. Atmospheric Re‐ ness length schemes implemented within the Noah land surface
search,176:231-239. DOI:10. 1016/j. atmosres. 2016. 02. 025. model for high-altitude regions[J]. Journal of Hydrometeorolo‐
Sun J,1999. Diurnal variations of thermal roughness height over a gy,15(3):921-937. DOI:10. 1175/JHM-D-13-0102. 1
grassland[J]. Boundary-Layer Meteorology,92(3):407-427. Zilitinkevich S,1995. Scaling for convective boundary layers[M]//
DOI:10. 1023/A:1002071421362. Wind Climate in Cities. Springer,Dordrecht,67-79. DOI:10.
Su Z,2002. The Surface Energy Balance System(SEBS)for estima‐ 1007/978-94-017-3686-2_4
tion of turbulent heat fluxes[J]. Hydrology and Earth System Sci‐ 陈海山,孙照渤,等,2005. 青藏高原单点地气交换过程的模拟试
ences,6(1):85-99. 验[J]. 高原气象,24(1):9-15.
Tanaka K,Ishikawa H,Hayashi T,et al,2001. Surface energy bud‐ 陈家宜,王介民,光田宁,1993. 一种确定地表粗糙度的独立方法
get at Amdo on the Tibetan Plateau using GAME/Tibet IOP98 data [J]. 大气科学,17(1):21-26. doi:10. 3878/j. issn. 1006-9895.
[J]. Journal of the Meteorological Society of Japan. Ser. II,79 1993. 01. 03.
(1B):505-517. DOI:10. 2151/jmsj. 79. 505. 郭东林,杨梅学,屈鹏,等,2009. 能量和水分循环过程研究:回顾
Wang S,Ma Y,2019. On the simulation of sensible heat flux over the 与探讨[J]. 冰川冻土,31(6):1116-1126. DOI:10. 11928/j.
Tibetan Plateau using different thermal roughness length parame‐ issn. 1001-7410. 2017. 05. 17.
terization schemes[J]. Theoretical and Applied Climatology,137 季国良,时兴和,高务祥,2001. 藏北高原地面加热场的变化及其
(3-4):1883-1893. DOI:10. 1007/s00704-018-2704-1. 对气候的影响[J]. 高原气象,20(3):239-244.
Wu G,Duan A,Liu Y,et al,2015. Tibetan Plateau climate dynam‐ 贾东于,文军,马耀明,等,2017. 植被对黄河源区水热交换影响的
ics:recent research progress and outlook[J]. National Science 研究[J]. 高原气象,36(2):424-435. DOI:10. 7522/j. issn.
Review,2(1):100-116. DOIi:10. 1093/nsr/nwu045. 1000-0534. 2016. 00044.
Yao T,Xue Y,Chen D,et al,2019. Recent third pole’s rapid warm‐ 李锁锁,吕世华,柳媛普,等,2010. 黄河上游玛曲地区空气动力学
ing accompanies cryospheric melt and water cycle intensification 参数的确定及其在陆面过程模式中的应用[J]. 高原气象,29
and interactions between monsoon and environment:Multidisci‐ (6):1408-1413.
plinary approach with observations,modeling,and analysis[J]. 李英,胡泽勇,2006. 藏北高原地表反照率的初步研究[J]. 高原气
Bulletin of the American Meteorological Society,100(3):423- 象,25(6):1034-1041.
444. DOI:10. 1175/BAMS-D-17-0057. 1. 刘少锋,林朝晖,2005. 通用陆面模式 CLM 在东亚不同典型下垫面
Yang K,Koike T,Yang D,2003. Surface flux parameterization in the 的验证试验[J]. 气候与环境研究,2005(3):406-421. DOI:
Tibetan Plateau[J]. Boundary-layer meteorology,106(2):245- 10. 3878/j. issn. 1006-9585. 2005. 03. 34.
262. DOI:10. 1023/A:1021152407334. 刘啸然,李茂善,胡文斌,2019. 藏北高原那曲地区不同下垫面地
Yang K,Koike T,Ishikawa H,et al,2008. Turbulent flux transfer 表粗糙度的变化特征研究[J]. 高原气象,38(2):428-438.
over bare-soil surfaces:Characteristics and parameterization[J]. DOI:10. 7522/j. issn. 1000-0534. 2018. 00083.
Journal of Applied Meteorology and Climatology,47(1):276- 刘新,吴国雄,刘屹岷,等,2002. 青藏高原加热与亚洲环流季节变