Page 16 - 《爆炸与冲击》2025年第12期
P. 16

第 45 卷              李孝臣,等: 蜂窝管表层约束混凝土抗高速侵彻性能研究                                 第 12 期

                    MENG C M, SONG D Y, JIANG Z G, et al. Experimental study on the anti-penetration performance of polygonal steel tube
                    confined concrete target [J]. Journal of Vibration and Shock, 2018, 37(13): 14–19. DOI: 10.13465/j.cnki.jvs.2018.13.003.
               [7]   宋殿义, 谭清华, 蒙朝美, 等. 格栅钢管约束混凝土靶抗多发打击性能试验研究 [J]. 防护工程, 2020, 42(3): 11–18. DOI:
                    10.3969/j.issn.1674-1854.2020.03.002.
                    SONG D Y, TAN Q H, MENG C M, et al. Experimental study on the resistance to multiple impacts of grating steel tube
                    confined concrete target [J]. Protective Engineering, 2020, 42(3): 11–18. DOI: 10.3969/j.issn.1674-1854.2020.03.002.
               [8]   宋殿义, 谭清华, 申志强, 等. 蜂窝钢管约束混凝土靶抗多发打击试验研究 [J]. 振动与冲击, 2021, 40(10): 133–139, 158.
                    DOI: 10.13465/j.cnki.jvs.2021.10.017.
                    SONG D Y, TAN Q H, SHEN Z Q, et al. Experimental investigation on cellular steel-tube-confined concrete tar-gets under
                    multi-hit  of  projectiles  [J].  Journal  of  Vibration  and  Shock,  2021,  40(10):  133–139,  158.  DOI:  10.13465/j.cnki.jvs.2021.
                    10.017.
               [9]   赵宏远, 武海军, 董恒, 等. 蜂窝钢管混凝土抗侵彻性能实验研究 [J]. 爆炸与冲击, 2023, 43(5): 053101. DOI: 10.11883/
                    bzycj-2022-0050.
                    ZHAO  H  Y,  WU  H  J,  DONG  H,  et  al.  Experimental  study  on  the  anti-penetration  performance  of  honeycomb  steel  tube
                    concrete [J]. Explosion and Shock Waves, 2023, 43(5): 053101. DOI: 10.11883/bzycj-2022-0050.
               [10]   李季, 储召军, 孙建虎, 等. 钢管钢纤维高强混凝土遮弹层抗侵彻数值模拟 [J]. 后勤工程学院学报, 2016, 32(2): 27–31.
                    DOI: 10.3969/j.issn.1672-7843.2016.02.005.
                    LI J, CHU Z J, SUN J H, et al. Numerical simulation of the anti-penetration performance of steel tube steel fiber high-strength
                    concrete armor layer [J]. Journal of Logistics Engineering College, 2016, 32(2): 27–31. DOI: 10.3969/j.issn.1672-7843.2016.
                    02.005.
               [11]   李干, 宋春明, 邱艳宇, 等. 超高速弹对花岗岩侵彻深度逆减现象的理论与实验研究 [J]. 岩石力学与工程学报, 2018,
                    37(1): 60–66. DOI: 10.13722/j.cnki.jrme.2017.0584.
                    LI G, SONG C M, QIU Y Y, et al. Theoretical and experimental study on the penetration depth reduction phenomenon of
                    ultra-high-speed projectiles into granite [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1): 60–66. DOI:
                    10.13722/j.cnki.jrme.2017.0584.
               [12]   Measurement of projectile velocities: NATO STANAG 4114 [S]. Brussels: NATO, 1977.
               [13]   FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles
                    into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. DOI: 10.1016/0734-743X(94)
                    80024-4.
               [14]   邓云飞, 崔亚男, 慕忠成, 等. 卵形头弹体对素混凝土高速侵彻的实验研究 [J]. 应用力学学报, 2019, 36(5): 1144–
                    1151, 1262. DOI: 10.11776/cjam.36.05.D050.
                    DENG  Y  F,  CUI  Y  N,  Mu  Z  C,  et  al.  Experimental  study  on  high-speed  penetration  of  ogive-nose  projectiles  into  plain
                    concrete [J]. Chinese Journal of Applied Mechanics, 2019, 36(5): 1144–1151, 1262. DOI: 10.11776/cjam.36.05.D050.
               [15]   MA S, ZHANG X, QIU X M. Comparison study of MPM and SPH in modeling hy-pervelocity impact problems. International
                    Journal of Impact Engineering, 2009, 36: 272–282. DOI:10.1016/j.ijimpeng.2008.07.001.
               [16]   倪锐晨, 孙梓贤, 李家盛, 等. 结构爆炸毁伤的浸没多介质有限体积物质点法 [J]. 力学学报, 2022, 54(12): 3269–3282.
                    DOI: 10.6052/0459-1879-22-446.
                    NI R C, SUN Z X, LI J S, et al. An immersed multi-material finite volume-material point method for structural blast damage [J].
                    Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(12): 3269–3282. DOI: 10.6052/0459-1879-22-446.
               [17]   谢桂兰, 左立来, 宋慕清, 等. 基于物质点法弹丸侵彻靶板的仿真与结构优化 [J]. 弹道学报, 2023, 35(2): 46–52. DOI:
                    10.12115/j.issn.1004-499X(2023)02-006.
                    XIE G L, ZUO L L, SONG M Q, et al. Simulation and structural optimization of projectile penetration of target plates based
                    on the material point method [J]. Journal of Ballistics, 2023, 35(2): 46–52. DOI: 10.12115/j.issn.1004-499X(2023)02-006.
               [18]   谢桂兰, 侯昆, 龚曙光, 等. 基于物质点法     Ti/Al3Ti 层状复合材料抗斜侵彻性能研究 [J]. 兵器装备工程学报, 2023, 44(4):
                    194–199. DOI: 10.11809/bqzbgcxb2023.04.027.
                    XIE G L, HOU K, GONG S G, et al. Research on oblique penetration resistance of Ti/Al3Ti laminate composites based on the
                    material  point  method  [J].  Journal  of  Ordnance  Equipment  Engineering,  2023,  44(4):  194–199.  DOI:  10.11809/bqzbgcxb
                    2023.04.027.


                                                         121001-13
   11   12   13   14   15   16   17   18   19   20   21