Page 197 - 《爆炸与冲击》2025年第9期
P. 197

第 45 卷                黄钰雄,等: 硬脂酸包覆铝粉爆炸火焰传播机理研究                                  第 9 期

                    passivated by non-inert coatings: characterisation and reactivity with air and water [J]. Powder Technology, 2006, 164(2):
                    111–115. DOI: 10.1016/j.powtec.2006.03.003.
               [5]   LIU H, YE H Q, ZHANG Y C. Preparation and characterization of PMMA/flaky aluminum composite particle in the presence
                    of  MPS  [J].  Colloids  and  Surfaces  A:  Physicochemical  and  Engineering  Aspects,  2008,  315(1/2/3):  1–6.  DOI:  10.1016/j.
                    colsurfa.2007.06.057.
               [6]   CHEN J S, CHEN K, SHI W X, et al. The preparation of novel core-shell suppressor and its suppression mechanism on coal
                    dust explosion flame [J]. Fuel, 2022, 313: 122997. DOI: 10.1016/j.fuel.2021.122997.
               [7]   ESCOT BOCANEGRA P, CHAUVEAU C, GÖKALP I. Experimental studies on the burning of coated and uncoated micro
                    and nano-sized aluminium particles [J]. Aerospace Science and Technology, 2007, 11(1): 33–38. DOI: 10.1016/j.ast.2006.
                    10.005.
               [8]   JIANG H P, BI M S, ZHANG J K, et al. Explosion hazard and prevention of Al-Ni mechanical alloy powders [J]. Journal of
                    Loss Prevention in the Process Industries, 2022, 75: 104714. DOI: 10.1016/j.jlp.2021.104714.
               [9]   LYU X, GAO Y, CUI Y S, et al. Study of ignition and combustion characteristics of kerosene-based nanofluid fuel containing
                    n-Al/CuO thermite [J]. Fuel, 2023, 331: 125778. DOI: 10.1016/j.fuel.2022.125778.
               [10]   XIAO F, LIU Z H, LIANG T X, et al. Establishing the interface layer on the aluminum surface through the self-assembly of
                    tannic acid (TA): improving the ignition and combustion properties of aluminum [J]. Chemical Engineering Journal, 2021,
                    420(Pt3): 130523. DOI: 10.1016/j.cej.2021.130523.
               [11]   XU J T, HUANG L, JIANG H P, et al. Explosion characteristics of aluminum-based activated fuels containing fluorine [J].
                    Defence Technology, 2023, 20: 34–43. DOI: 10.1016/j.dt.2021.12.008.
               [12]   KWON Y S, GROMOV A A, STROKOVA J I. Passivation of the surface of aluminum nanopowders by protective coatings of
                    the different chemical origin [J]. Applied Surface Science, 2007, 253(12): 5558–5564. DOI: 10.1016/j.apsusc.2006.12.124.
               [13]   商琦伟. 铝粉/氟化物的研制及其性能研究 [D]. 太原: 中北大学, 2023. DOI: 10.27470/d.cnki.ghbgc.2023.001368.
                    SHANG Q W. Preparation and properties of aluminum powder/fluoride [D]. Taiyuan: North University of China, 2023. DOI:
                    10.27470/d.cnki.ghbgc.2023.001368.
               [14]   LI N, ZHANG Y S, GUO R, et al. Effect of stearic acid coating on the explosion characteristics of aluminum dust [J]. Fuel,
                    2022, 320: 123880. DOI: 10.1016/j.fuel.2022.123880.
               [15]   SOSSI A, DURANTI E, PARAVAN C, et al. Non-isothermal oxidation of aluminum nanopowder coated by hydrocarbons and
                    fluorohydrocarbons [J]. Applied Surface Science, 2013, 271: 337–343. DOI: 10.1016/j.apsusc.2013.01.197.
               [16]   堵同宽, 朱宝忠, 李浩, 等. 硬脂酸包覆纳米铝粉燃烧特性 [J]. 安徽工业大学学报            (自然科学版), 2016, 33(1): 23–27. DOI:
                    10.3969/j.issn.1671-7872.2016.01.006.
                    DU T K, ZHU B Z, LI H, et al. Combustion characteristics of stearic acid-coated aluminum nanopowder [J]. Journal of Anhui
                    University of Technology (Natural Science), 2016, 33(1): 23–27. DOI: 10.3969/j.issn.1671-7872.2016.01.006.
               [17]   GUO R, LI N, ZHANG X Y, ZHANG Y S, et al. Suppression mechanism of micron/nano PMMA dust flame based on thermal
                    analysis [J]. Advanced Powder Technology, 2022, 33(12): 103848. DOI: 10.1016/j.apt.2022.103848.
               [18]   张延松, 李南, 郭瑞, 等. 月桂酸与硬脂酸粉尘爆炸过程热解动力学与火焰传播特性关系 [J]. 爆炸与冲击, 2022, 42(7):
                    075402. DOI: 10.11883/bzycj-2021-0470.
                    ZHANG Y S, LI N, GUO R, et al. Relationship between pyrolysis kinetics and flame propagation characteristics of lauric acid
                    and stearic acid dust [J]. Explosion and Shock Waves, 2022, 42(7): 075402. DOI: 10.11883/bzycj-2021-0470.
               [19]   KIM K T, KIM D W, KIM S H, et al. Synthesis and improved explosion behaviors of aluminum powders coated with nano-
                    sized nickel film [J]. Applied Surface Science, 2017, 415: 104–108. DOI: 10.1016/j.apsusc.2016.11.056.
               [20]   ZHU C C, GAO W, JIANG H P, et al. A comparative investigation of the explosion mechanism of metal hydride AlH 3  dust
                    and Al/H 2  mixture [J]. International Journal of Hydrogen Energy, 2024, 50: 1296–1305. DOI: 10.1016/j.ijhydene.2023.10.178.
               [21]   LI Q Z, WANG K, ZHENG Y N, et al. Explosion severity of micro-sized aluminum dust and its flame propagation properties
                    in 20 L spherical vessel [J]. Powder Technology, 2016, 301: 1299–1308. DOI: 10.1016/j.powtec.2016.08.012.
                                                                                          (责任编辑    蔡国艳)










                                                         095401-14
   192   193   194   195   196   197   198