Page 92 - 《爆炸与冲击》2025年第6期
P. 92
第 45 卷 王 伟,等: 循环冲击作用下砂岩裂缝扩展及渗透率响应特征 第 6 期
步连通,渗透率提升 1 468.18%~2 893.33%;循环冲击九次时,形成连通裂缝网络,渗透率提升 4 718.18%~
9 380.00%;循环冲击作用能够显著提高砂岩的渗透率,裂缝扩展和连通是渗透率提升的关键驱动因素。
参考文献:
[1] 王伟豪, 刘金辉, 阳奕汉, 等. 地浸采铀过程中含矿层渗透性演化的示踪试验 [J]. 有色金属 (冶炼部分), 2024(2): 72–82.
DOI: 10.3969/j.issn.1007-7545.2024.02.011.
WANG W H, LIU J H, YANG Y H, et al. Tracer test of permeability evolution of ore-bearing layer during in-situ leaching of
uranium [J]. Nonferrous Metals (Extractive Metallurgy), 2024(2): 72–82. DOI: 10.3969/j.issn.1007-7545.2024.02.011.
[2] 牛庆合, 何佳彬, 王伟, 等. 基于渗流-化学-应力多场耦合的砂岩型铀矿 CO 2 +O 2 地浸开采的数值模拟 [J]. 有色金属 (冶炼
部分), 2023(6): 144–152. DOI: 10.3969/j.issn.1007-7574.2023.06.016.
NIU Q H, HE J B, WANG W, et al. Numerical simulation of CO 2 +O 2 in-situ leaching of sandstone type uranium deposit based
on multifield coupling of seepage-chemistry-stress [J]. Nonferrous Metals (Extractive Metallurgy), 2023(6): 144–152. DOI:
10.3969/j.issn.1007-7574.2023.06.016.
[3] 陶峰, 张传飞, 冯国平, 等. 某砂岩型铀矿 CO 2 +O 2 地浸采铀试验 [J]. 有色金属 (冶炼部分), 2022(6): 56–61. DOI:
10.3969/j.issn.1007-7545.2022.06.010.
TAO F, ZHANG C F, FENG G P, et al. CO 2 +O 2 in-situ leaching of uranium from a sandstone type uranium deposit [J].
Nonferrous Metals (Extractive Metallurgy), 2022(6): 56–61. DOI: 10.3969/j.issn.1007-7545.2022.06.010.
[4] 苏学斌. 第三代铀采冶技术有望成为“走出去”的新生力量 [J]. 中国核工业, 2015(11): 28–29.
[5] 王刚, 陈昊, 陈雪畅, 等. 基于 CT 三维重构煤体变开度裂隙渗流特性研究 [J]. 中国矿业大学学报, 2024, 53(1): 59–67.
DOI: 10.13247/j.cnki.jcumt.20230128.
WANG G, CHEN H, CHEN X C, et al. Study on seepage characteristics of coal fissures with variable apertures based on CT
3D reconstruction [J]. Journal of China University of Mining & Technology, 2024, 53(1): 59–67. DOI: 10.13247/j.cnki.jcumt.
20230128.
[6] ZHOU X Y, WANG W, NIU Q H, et al. Geochemical reactions altering the mineralogical and multiscale pore characteristics
of uranium-bearing reservoirs during CO 2 + O 2 in situ leaching [J]. Frontiers in Earth Science, 2023, 10: 1094880. DOI: 10.
3389/feart.2022.1094880.
[7] 王伟, 李小春. 低渗透砂岩型铀矿床增渗方法及其可行性研究 [J]. 岩土力学, 2009, 30(8): 2309–2314. DOI: 10.16285/j.
rsm.2009.08.002.
WANG W, LI X C. Study of enhanced permeability methods and their feasibility in low-permeability sandstone-type uranium
deposit [J]. Rock and Soil Mechanics, 2009, 30(8): 2309–2314. DOI: 10.16285/j.rsm.2009.08.002.
[8] 李晓锋, 李海波, 刘凯, 等. 冲击荷载作用下岩石动态力学特性及破裂特征研究 [J]. 岩石力学与工程学报, 2017, 36(10):
2393–2405. DOI: 10.13722/j.cnki.jrme.2017.0539.
LI X F, LI H B, LIU K, et al. Dynamic properties and fracture characteristics of rocks subject to impact loading [J]. Chinese
Journal of Rock Mechanics and Engineering, 2017, 36(10): 2393–2405. DOI: 10.13722/j.cnki.jrme.2017.0539.
[9] 吕晓聪, 许金余, 葛洪海, 等. 围压对砂岩动态冲击力学性能的影响 [J]. 岩石力学与工程学报, 2010, 29(1): 193–201.
LV X C, XU J Y, GE H H, et al. Effects of confining pressure on mechanical behaviors of sandstone under dynamic impact
loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(1): 193–201.
[10] 刘少赫, 许金余, 王鹏, 等. 围压条件下砂岩循环冲击损伤的力学与超声分析 [J]. 振动与冲击, 2015, 34(1): 190–194. DOI:
10.13465/j.cnki.jvs.2015.01.033.
LIU S H, XU J Y, WANG P, et al. Mechanical and ultrasonic analysis on damage of sandstone under cyclical impact loading
with confining pressure [J]. Journal of Vibration and Shock, 2015, 34(1): 190–194. DOI: 10.13465/j.cnki.jvs.2015.01.033.
[11] 王志亮, 汪大为, 汪书敏, 等. 循环冲击下大理岩的损伤力学行为及能量耗散特性 [J]. 爆炸与冲击, 2024, 44(4): 043104.
DOI: 10.11883/bzycj-2023-0243.
WANG Z L, WANG D W, WANG S M, et al. Dynamic behaviors and energy dissipation characteristics of marble under
cyclic impact loading [J]. Explosion and Shock Waves, 2024, 44(4): 043104. DOI: 10.11883/bzycj-2023-0243.
[12] 许金余, 吕晓聪, 张军, 等. 循环冲击作用下围压对斜长角闪岩动态特性的影响研究 [J]. 振动与冲击, 2010, 29(8): 60–63,
72. DOI: 10.13465/j.cnki.jvs.2010.08.005.
061421-12