Page 179 - 《爆炸与冲击》2023年第2期
P. 179
第 43 卷 张保勇,等: 不同迎爆面结构的泡沫金属对甲烷气体爆炸传播阻隔性能的实验研究 第 2 期
(3) 减小泡沫金属迎爆面锯齿角度,可以有效降低材料后端熄爆参数。实验 2 中材料后端熄爆参数
为 17.63 MPa·℃,熄爆参数最低。
参考文献:
[1] 汪腾蛟, 周西华, 白刚, 等. 煤矿火灾诱发瓦斯爆炸危险性预测 [J]. 煤炭学报, 2020, 45(12): 4104–4110. DOI: 10.13225/j.
cnki.jccs.2019.1389.
WANG T J, ZHOU X H, BAI G, et al. Hazard prediction of gas explosion induced by coal mine fire [J]. Journal of China Coal
Society, 2020, 45(12): 4104–4110. DOI: 10.13225/j.cnki.jccs.2019.1389.
[2] 王秋红, 王二飞, 陈晓坤, 等. 管道内瓦斯爆炸火焰传播压力与温度特性 [J]. 中南大学学报 (自然科学版), 2020, 51(1):
239–247. DOI: 10.11817/j.issn.1672-7207.2020.01.027.
WANG Q H, WANG E F, CHEN X K, et al. Pressure and temperature characteristics of flame propagation of gas explosion in
pipeline [J]. Journal of Central South University (Science and Technology), 2020, 51(1): 239–247. DOI: 10.11817/j.issn.1672-
7207.2020.01.027.
[3] 李润之. 瓦斯煤尘共存条件下的煤尘云爆炸下限 [J]. 爆炸与冲击, 2018, 38(4): 913–917. DOI: 10.11883/bzycj-2016-0331.
LI R Z. Minimum explosive concentration of coal dust cloud in the coexistence of gas and coal dust [J]. Explosion and Shock
Waves, 2018, 38(4): 913–917. DOI: 10.11883/bzycj-2016-0331.
[4] 余明高, 阳旭峰, 郑凯, 等. 障碍物对甲烷/氢气爆炸特性的影响 [J]. 爆炸与冲击, 2018, 38(1): 19–27. DOI: 10.11883/bzycj-
2017-0172.
YU M G, YANG X F, ZHENG K, et al. Effect of obstacles on explosion characteristics of methane/hydrogen [J]. Explosion
and Shock Waves, 2018, 38(1): 19–27. DOI: 10.11883/bzycj-2017-0172.
[5] 秦毅, 陈小伟, 黄维. 密闭空间可燃气体爆炸超压预测 [J]. 爆炸与冲击, 2020, 40(3): 032202. DOI: 10.11883/bzycj-2019-
0175.
QIN Y, CHEN X W, HUANG W. Overpressure prediction of combustible gas explosion in confined space [J]. Explosion and
Shock Waves, 2020, 40(3): 032202. DOI: 10.11883/bzycj-2019-0175.
[6] 时本军, 穆朝民, 马海峰, 等. 腔体影响全巷道甲烷爆炸冲击波传播的特性 [J]. 煤炭学报, 2020, 45(S2): 841–849. DOI:
10.13225/j.cnki.jccs.2020.0791.
SHI B J, MU C M, MA H F, et al. Cavity effect on the characteristics of methane blast wave propagation in the whole
roadway [J]. Journal of China Coal Society, 2020, 45(S2): 841–849. DOI: 10.13225/j.cnki.jccs.2020.0791.
[7] 薛少谦, 黄子超, 杜宇婷, 等. 基于爆炸强度与隔爆屏障作用技术的巷道隔爆实验 [J]. 煤炭学报, 2021, 46(6): 1791–1798.
DOI: 10.13225/j.cnki.jccs.HZ21.0438.
XUE S Q, HUANG Z C, DU Y T, et al. Roadway explosion isolation technology based on explosion intensity and flame-proof
barrier [J]. Journal of China Coal Society, 2021, 46(6): 1791–1798. DOI: 10.13225/j.cnki.jccs.HZ21.0438.
[8] 尹德军, 郑坚, 熊超, 等. 基于弹丸爆炸毁伤效应的复合材料与结构研究进展 [J]. 材料导报, 2018, 32(5): 815–821,827.
DOI: 10.11896/j.issn.1005-023X.2018.05.018.
YIN D J, ZHENG J, XIONG C, et al. Research progress on composite materials and structures used for protection against
damage effect of projectile explosion [J]. Materials Review, 2018, 32(5): 815–821,827. DOI: 10.11896/j.issn.1005-023X.2018.
05.018.
[9] 张博一, 高金涛, 王理, 等. 粉煤灰空心球/Al 复合泡沫材料准静态力学性能及本构模型 [J]. 复合材料学报, 2021, 38(8):
2655–2665. DOI: 10.13801/j.cnki.fhclxb.20201116.003.
ZHANG B Y, GAO J T, WANG L, et al. Quasi-static mechanical properties and constitutive model of fly ash
cenosphere/aluminum syntactic foam [J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2655–2665. DOI: 10.13801/j.cnki.
fhclxb.20201116.003.
[10] 王建忠, 许忠国, 敖庆波, 等. 金属纤维多孔材料力学性能研究现状 [J]. 稀有金属材料与工程, 2016, 45(6): 1636–1640.
WANG J Z, XU Z G, AO Q B, et al. Status quo of mechanical properties of porous metal fibrous materials [J]. Rare Metal
Materials and Engineering, 2016, 45(6): 1636–1640.
025402-9