Page 169 - 《爆炸与冲击》2023年第2期
P. 169

第 43 卷                杜赛枫,等: 破膜压力对氢-空气预混气体燃爆特性的影响                                第 2 期

                    HAO  T  T,  WANG  C  J,  YAN  W  J,  et  al.  Structural  dynamical  characteristics  induced  by  vented  hydrogen  explosion  [J].
                    Explosion and Shock Waves, 2020, 40(6): 065401. DOI: 10.11883/bzycj-2019-0412.
               [5]  张庆武, 蒋军成, 喻源, 等. 泄爆导管对球形容器内气体爆炸泄放过程影响的试验 [J]. 安全与环境学报, 2015, 15(2):
                    51–54. DOI: 10.13637/j.issn.1009-6094.2015.02.011.
                    ZHANG Q W, JIANG J C, YU Y, et al. Experimental study over the effect of the relief duct on the venting of gas explosion in
                    a spherical vessel [J]. Journal of Safety and Environment, 2015, 15(2): 51–54. DOI: 10.13637/j.issn.1009-6094.2015.02.011.
               [6]  GUO J, SUN X X, RUI S C, et al. Effect of ignition position on vented hydrogen-air explosions [J]. International Journal of
                    Hydrogen Energy, 2015, 40(45): 15780–15788. DOI: 10.1016/j.ijhydene.2015.09.038.
               [7]  CHOW S K, CLEAVER R P, FAIRWEATHER M, et al. An experimental study of vented explosions in a 3∶1 aspect ratio
                    cylindrical vessel [J]. Process Safety Environmental Protection, 2000, 78(6): 425–433. DOI: 10.1205/095758200530970.
               [8]  KASMANI R M, ANDREWS G E, PHYLAKTOU H N, et al. Influence of static burst pressure and ignition position on duct-
                    vented gas explosions [C] // Proceedings of the 5th International Seminar on Fire and Explosion Hazards. Edinburgh, England:
                     2007: 254–264.
               [9]  BAO Q, FANG Q, ZHANG Y D, et al. Effects of gas concentration and venting pressure on overpressure transients during
                    vented explosion of methane-air mixtures [J]. Fuel, 2016, 175: 40–48. DOI: 10.1016/j.fuel.2016.01.084.
               [10]  文虎, 高慧慧, 王秋红, 等. 泄爆口强度对管内天然气爆炸流场的影响仿真 [J]. 天然气工业, 2019, 39(8): 126–136. DOI:
                    10.3787/j.issn.1000-0976.2019.08.016.
                    WEN H, GAO H H, WANG Q H, et al. A simulation study on the influence of vent port strength on the natural gas explosion
                    flow field in line pipes [J]. Natural Gas Industry, 2019, 39(8): 126–136. DOI: 10.3787/j.issn.1000-0976.2019.08.016.
               [11]  DOU  Z  G,  ZHENG  L  G,  ZHENG  K,  et  al.  Effect  of  film  thickness  and  methane  fraction  on  explosion  characteristics  of
                    biogas/air  mixture  in  a  duct  [J].  Process  Safety  and  Environmental  Protection,  2020,  139: 26–35.  DOI:  10.1016/j.psep.
                    2020.04.006.
               [12]  RUI S C, LI Q, GUO J, et al. Experimental and numerical study on the effect of low vent burst pressure on vented methane-air
                    deflagrations [J]. Process Safety and Environmental Protection, 2021, 146: 35–42. DOI: 10.1016/j.psep.2020.08.028.
               [13]  CAO  Y,  GUO  J,  HU  K  L,  et  al.  Effect  of  ignition  location  on  external  explosion  in  hydrogen-air  explosion  venting  [J].
                    International Journal of Hydrogen Energy, 2017, 42(15): 10547–10554. DOI: 10.1016/j.ijhydene.2017.01.09.
               [14]  RUI S C, GUO J, LI G, et al. The effect of vent burst pressure on a vented hydrogen-air deflagration in a 1 m  vessel [J].
                                                                                                  3
                    International Journal of Hydrogen Energy, 2018, 43(45): 21169–21176. DOI: 10.1016/j.ijhydene.2018.09.124.
               [15]  ZHANG S, TANG Z S, LI J L, et al. Effects of equivalence ratio, thickness of rupture membrane and vent area on vented
                    hydrogen-air deflagrations in an end-vented duct with an obstacle [J]. International Journal of Hydrogen Energy, 2019, 44(47):
                    26100–26108. DOI: 10.1016/j.ijhydene.2019.08.057.
               [16]  Spanish Institute of Standardization. Gas explosion venting protective systems: UNE-EN 14994-2007 [S]. Brussels, Belgium:
                    European Committee for Standardization, 2007.
               [17]  Institute National Fire Protection Association. Standard on explosion protection by deflagration venting: NFPA 68 ERTA 1-
                    2017 [S]. USA: American National Standards, 2017.
               [18]  DAHOE A E. Laminar burning velocities of hydrogen-air mixtures from closed vessel gas explosions [J]. Journal of Loss
                    Prevention in the Process Industries, 2005, 18(3): 152–166. DOI: 10.1016/j.jlp.2005.03.007.
               [19]  FERRARA G, WILLACY S K, PHYLAKTOU H N, et al. Venting of gas explosion through relief ducts: interaction between
                    internal and external explosions [J]. Journal of Hazardous Materials, 2008, 155(1): 358–368. DOI: 10.1016/j.jhazmat.2007.
                    11.077.
               [20]  李艳超, 毕明树, 高伟. 耦合火焰自加速传播的氢气云爆炸超压预测 [J]. 爆炸与冲击, 2021, 41(7): 072101. DOI: 10.11883/
                    bzycj-2019-0004.
                    LI Y C, BI M S, GAO W. Theoretical prediction of hydrogen cloud explosion overpressure considering self-accelerating flame
                    propagation [J]. Explosion and Shock Waves, 2021, 41(7): 072101. DOI: 10.11883/bzycj-2019-0004.
               [21]  JIANG  X,  FAN  B,  YE  J,  et  al.  Experimental  investigations  on  the  external  pressure  during  venting  [J].  Journal  of  Loss
                    Prevention in the Process Industries, 2005, 18(1): 21–26. DOI: 10.1016/j.jlp.2004.09.002.
               [22]  GUO J, WANG C J, LIU X Y. Experimental study on duct-vented explosion of hydrogen-air mixtures in a wide range of


                                                         025401-10
   164   165   166   167   168   169   170   171   172   173   174