Page 105 - 《爆炸与冲击》2023年第2期
P. 105
第 43 卷 刘志东,等: 高聚物牺牲包层对钢筋混凝土板的爆炸毁伤缓解效应 第 2 期
散。这表明高聚物牺牲包层在工程结构的抗爆防护中有着潜在的应用前景。
(2) 通 过 数 值 模 拟 得 到 的 毁 伤 结 果 与 现 场 爆 炸 试 验 结 果 基 本 一 致 , 表 明 本 文 中 所 建 立 的 SPH-
FEM 耦合模型能够有效地模拟接触爆炸下 PU-RCS 的毁伤特性。参数分析表明,随着药量的增大,跨中
位移不断增大,板出现了明显的整体弯曲破坏现象;增大高聚物牺牲包层的密度和厚度有利于提高其防
护性能,降低被保护钢筋混凝土板的弯曲破坏程度,但包层厚度的变化会引起被保护钢筋混凝土板毁伤
模式的改变。
(3) 高聚物牺牲包层具有优良的吸能特性,药量在一定范围内增大时,高聚物牺牲包层依然能维持
较高的吸能水平,吸能占比达到 80% 以上;牺牲包层密度、厚度的增大可以明显地增加包层的吸能量,
提高包层的吸能占比,进而降低爆炸能量对被保护钢筋混凝土板的作用。
参考文献:
[1] 赵春风, 何凯城, 卢欣, 等. 弧形双钢板混凝土组合板抗爆性能数值研究 [J]. 爆炸与冲击, 2022, 42(2): 025101. DOI:
10.11883/bzycj-2021-0205.
ZHAO C F, HE K C, LU X, et al. Numerical study of blast resistance of curved steel-concrete-steel composite slabs [J].
Explosion and Shock Waves, 2022, 42(2): 025101. DOI: 10.11883/bzycj-2021-0205.
[2] 赵春风, 卢欣, 何凯城, 等. 单钢板混凝土剪力墙抗爆性能研究 [J]. 爆炸与冲击, 2020, 40(12): 121403. DOI: 10.11883/
bzycj-2020-0058.
ZHAO C F, LU X, HE K C, et al. Blast resistance property of concrete shear wall with single-side steel plate [J]. Explosion
and Shock Waves, 2020, 40(12): 121403. DOI: 10.11883/bzycj-2020-0058.
[3] 赵春风, 何凯城, 卢欣, 等. 双钢板混凝土组合板抗爆性能分析 [J]. 爆炸与冲击, 2021, 41(9): 095102. DOI: 10.11883/bzycj-
2020-0291.
ZHAO C F, HE K C, LU X, et al. Analysis on the blast resistance of steel concrete composite slab [J]. Explosion and Shock
Waves, 2021, 41(9): 095102. DOI: 10.11883/bzycj-2020-0291.
[4] WU C Q, SHEIKH H. A finite element modelling to investigate the mitigation of blast effects on reinforced concrete panel
using foam cladding [J]. International Journal of Impact Engineering, 2013, 55: 24–33. DOI: 10.1016/j.ijimpeng.2012.11.006.
[5] REBELO H B, LECOMPTE D, CISMASIU C, et al. Experimental and numerical investigation on 3D printed PLA sacrificial
honeycomb cladding [J]. International Journal of Impact Engineering, 2019, 131: 162–173. DOI: 10.1016/j.ijimpeng.2019.
05.013.
[6] BOHARA R P, LINFORTH S, GHAZLAN A, et al. Performance of an auxetic honeycomb-core sandwich panel under close-
in and far-field detonations of high explosive [J]. Composite Structures, 2022, 280: 114907. DOI: 10.1016/j.compstruct.2021.
114907.
[7] 范东宇, 苏彬豪, 彭辉, 等. 多孔泡沫牺牲层的动态压溃及缓冲吸能机理研究 [J]. 力学学报, 2022, 54(6): 1630–1640. DOI:
10.6052/0459-1879-22-047.
FAN D Y, SU B H, PENG H, et al. Research on dynamic crushing and mechanism of mitigation and energy absorption of
cellular sacrificial layers [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(6): 1630–1640. DOI: 10.6052/
0459-1879-22-047.
[8] ZHAO H L, YU H T, YUAN Y, et al. Blast mitigation effect of the foamed cement-base sacrificial cladding for tunnel
structures [J]. Construction and Building Materials, 2015, 94(9): 710–718. DOI: 10.1016/j.conbuildmat.2015.07.076.
[9] WANG Z Y, DU M R, FANG H Y, et al. Influence of different corrosion environments on mechanical properties of a roadbed
rehabilitation polyurethane grouting material under uniaxial compression [J]. Construction and building materials, 2021, 301:
124092. DOI: 10.1016/j.conbuildmat.2021.124092.
[10] FANG H Y, LI B, WANG F M, et al. The mechanical behaviour of drainage pipeline under traffic load before and after
polymer grouting trenchless repairing [J]. Tunnelling and Underground Space Technology, 2018, 74(4): 185–194. DOI: 10.1016/
j.tust.2018.01.018.
[11] 王复明, 李曼珺, 方宏远, 等. 黄河大堤高聚物防渗墙稳定性分析 [J]. 人民黄河, 2019, 41(10): 48–52,86. DOI: 10.3969/j.
issn.1000-1379.2019.10.009.
023301-16