Page 86 - 《软件学报》2020年第9期
P. 86

张展  等:面向边缘计算的目标追踪应用部署策略研究                                                        2707


          [3]    Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv Preprint arXiv:1409.1556,
             2014.
          [4]    Tao R, Gavves E, Smeulders AWM. Siamese instance search for tracking. In: Proc. of the IEEE Conf. on Computer Vision and
             Pattern Recognition. 2016. 1420−1429. [doi: 10.1109/CVPR.2016.158]
          [5]    Bertinetto L, Valmadre J, Henriques JF, et al. Fully-Convolutional siamese networks for object tracking. In: Proc. of the European
             Conf. on Computer Vision. Cham: Springer-Verlag, 2016. 850−865.
          [6]    Li B, Yan J, Wu W, et al. High performance visual tracking with siamese region proposal network. In: Proc. of the IEEE Conf. on
             Computer Vision and Pattern Recognition. 2018. 8971−8980. [doi: 10.1109/CVPR.2018.00935]
          [7]    Li B, Wu W, Wang Q, et al. Siamrpn++: Evolution of siamese visual tracking with very deep networks. In: Proc. of the IEEE Conf.
             on Computer Vision and Pattern Recognition. 2019. 4282−4291.
          [8]    Zhang  Z, Peng  H.  Deeper  and  wider siamese networks for real-time  visual tracking. In: Proc. of the IEEE  Conf. on Computer
             Vision and Pattern Recognition. 2019. 4591−4600.
          [9]    Wang Q, Zhang L, Bertinetto L, et al. Fast online object tracking and segmentation: A unifying approach. In: Proc. of the IEEE
             Conf. on Computer Vision and Pattern Recognition. 2019. 1328−1338.
         [10]    Shi W, Cao J, Zhang Q, et al. Edge computing: Vision and challenges. IEEE Internet of Things Journal, 2016,3(5):637−646.
         [11]    Hu W, Gao Y, Ha K, et al. Quantifying the impact of edge computing on mobile applications. In: Proc. of the 7th ACM SIGOPS
             Asia-Pacific Workshop on Systems. ACM, 2016. 5.
         [12]    Garg S, Singh A, Kaur K, et al. Edge computing-based security framework for big data analytics in VANETs. IEEE Network, 2019,
             33(2):72−81. [doi: 10.1109/MNET.2019.1800239]
         [13]    Sheng Z, Pfersich S, Eldridge A, et al. Wireless acoustic sensor networks and edge computing for rapid acoustic monitoring. IEEE/
             CAA Journal of Automatica Sinica, 2019,6(1):64−74. [doi: 10.1109/JAS.2019.1911324]
         [14]    Lai CF, Chien WC, Yang LT, et al. LSTM and edge computing for big data feature recognition of industrial electrical equipment.
             IEEE Trans. on Industrial Informatics, 2019,(99):1−1. [doi: 10.1109/TII.2019.2892818]
         [15]    Muhammad G, Alhamid MF, Alsulaiman M, et al. Edge computing with cloud for voice disorder assessment and treatment. IEEE
             Communications Magazine, 2018,56(4):60−65. [doi: 10.1109/MCOM.2018.1700790]
         [16]    Li ZS, Xie RC, Sun L, et al. A survey of mobile edge computing. Telecommunications Science, 2018,34(1):87−101 (in Chinese
             with English abstract). [doi: 10.1109/JIOT.2016.2579198]
         [17]    Tong L, Li Y, Gao W. A hierarchical edge cloud architecture for mobile computing. In: Proc. of the 35th Annual IEEE Int’l Conf.
             on Computer Communications. IEEE, 2016. 1−9. [doi: 10.1109/INFOCOM.2016.7524340]
         [18]    Yao C, Wang X, Zheng Z, et al. EdgeFlow: Open-source multi-layer data flow processing in edge computing for 5G and beyond. In:
             Proc. of the IEEE Network. 2018. 1−8. [doi: 10.1109/MNET.2018.1800001]
         [19]    Tseng CW, Tseng FH, Yang YT, et al. Task scheduling for edge computing with agile VNFs on-demand service model toward 5G
             and beyond. Wireless Communications and Mobile Computing, 2018,2018:1−13.
         [20]    Sun Y, Guo  X, Song J,  et  al. Adaptive learning-based task offloading for vehicular  edge  computing systems.  IEEE  Trans. on
             Vehicular Technology, 2019. [doi: 10.1109/TVT.2019.2895593]
         [21]    Zhang Y, Chen X, Chen Y, et al. Cost efficient scheduling for delay-sensitive tasks in edge computing system. In: Proc. of the
             IEEE Int’l Conf. on Services Computing. IEEE, 2018. 73−80. [doi: 10.1109/SCC.2018.00017]
         [22]    Fan Q, Ansari N. Application aware workload allocation for edge computing-based IoT. IEEE Internet of Things Journal, 2018,5(3):
             2146−2153. [doi: 10.1109/JIOT.2018.2826006]
         [23]    Du W, Lei T, He  Q,  et  al.  Service capacity enhanced  task  offloading and  resource allocation  in multi-server edge computing
             environment. arXiv Preprint arXiv:1903.04709, 2019.
         [24]    Guan P, Deng X, Liu Y, et al. Analysis of multiple clients’ behaviors in edge computing environment. IEEE Trans. on Vehicular
             Technology, 2018:1−1. [doi: 10.1109/TVT.2018.2850917]
         [25]    Lin B, Zhu F, Zhang J, et al. A time-driven data placement strategy for a scientific workflow combining edge computing and cloud
             computing. IEEE Trans. on Industrial Informatics, 2019. [doi: 10.1109/TII.2019.2905659]
         [26]    Ren Y, Nitu V, Liu G, et al. Efficient, dynamic multi-tenant edge computation in EdgeOS. arXiv preprint arXiv:1901.01222, 2019.
   81   82   83   84   85   86   87   88   89   90   91