Page 86 - 《软件学报》2020年第9期
P. 86
张展 等:面向边缘计算的目标追踪应用部署策略研究 2707
[3] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv Preprint arXiv:1409.1556,
2014.
[4] Tao R, Gavves E, Smeulders AWM. Siamese instance search for tracking. In: Proc. of the IEEE Conf. on Computer Vision and
Pattern Recognition. 2016. 1420−1429. [doi: 10.1109/CVPR.2016.158]
[5] Bertinetto L, Valmadre J, Henriques JF, et al. Fully-Convolutional siamese networks for object tracking. In: Proc. of the European
Conf. on Computer Vision. Cham: Springer-Verlag, 2016. 850−865.
[6] Li B, Yan J, Wu W, et al. High performance visual tracking with siamese region proposal network. In: Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition. 2018. 8971−8980. [doi: 10.1109/CVPR.2018.00935]
[7] Li B, Wu W, Wang Q, et al. Siamrpn++: Evolution of siamese visual tracking with very deep networks. In: Proc. of the IEEE Conf.
on Computer Vision and Pattern Recognition. 2019. 4282−4291.
[8] Zhang Z, Peng H. Deeper and wider siamese networks for real-time visual tracking. In: Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition. 2019. 4591−4600.
[9] Wang Q, Zhang L, Bertinetto L, et al. Fast online object tracking and segmentation: A unifying approach. In: Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition. 2019. 1328−1338.
[10] Shi W, Cao J, Zhang Q, et al. Edge computing: Vision and challenges. IEEE Internet of Things Journal, 2016,3(5):637−646.
[11] Hu W, Gao Y, Ha K, et al. Quantifying the impact of edge computing on mobile applications. In: Proc. of the 7th ACM SIGOPS
Asia-Pacific Workshop on Systems. ACM, 2016. 5.
[12] Garg S, Singh A, Kaur K, et al. Edge computing-based security framework for big data analytics in VANETs. IEEE Network, 2019,
33(2):72−81. [doi: 10.1109/MNET.2019.1800239]
[13] Sheng Z, Pfersich S, Eldridge A, et al. Wireless acoustic sensor networks and edge computing for rapid acoustic monitoring. IEEE/
CAA Journal of Automatica Sinica, 2019,6(1):64−74. [doi: 10.1109/JAS.2019.1911324]
[14] Lai CF, Chien WC, Yang LT, et al. LSTM and edge computing for big data feature recognition of industrial electrical equipment.
IEEE Trans. on Industrial Informatics, 2019,(99):1−1. [doi: 10.1109/TII.2019.2892818]
[15] Muhammad G, Alhamid MF, Alsulaiman M, et al. Edge computing with cloud for voice disorder assessment and treatment. IEEE
Communications Magazine, 2018,56(4):60−65. [doi: 10.1109/MCOM.2018.1700790]
[16] Li ZS, Xie RC, Sun L, et al. A survey of mobile edge computing. Telecommunications Science, 2018,34(1):87−101 (in Chinese
with English abstract). [doi: 10.1109/JIOT.2016.2579198]
[17] Tong L, Li Y, Gao W. A hierarchical edge cloud architecture for mobile computing. In: Proc. of the 35th Annual IEEE Int’l Conf.
on Computer Communications. IEEE, 2016. 1−9. [doi: 10.1109/INFOCOM.2016.7524340]
[18] Yao C, Wang X, Zheng Z, et al. EdgeFlow: Open-source multi-layer data flow processing in edge computing for 5G and beyond. In:
Proc. of the IEEE Network. 2018. 1−8. [doi: 10.1109/MNET.2018.1800001]
[19] Tseng CW, Tseng FH, Yang YT, et al. Task scheduling for edge computing with agile VNFs on-demand service model toward 5G
and beyond. Wireless Communications and Mobile Computing, 2018,2018:1−13.
[20] Sun Y, Guo X, Song J, et al. Adaptive learning-based task offloading for vehicular edge computing systems. IEEE Trans. on
Vehicular Technology, 2019. [doi: 10.1109/TVT.2019.2895593]
[21] Zhang Y, Chen X, Chen Y, et al. Cost efficient scheduling for delay-sensitive tasks in edge computing system. In: Proc. of the
IEEE Int’l Conf. on Services Computing. IEEE, 2018. 73−80. [doi: 10.1109/SCC.2018.00017]
[22] Fan Q, Ansari N. Application aware workload allocation for edge computing-based IoT. IEEE Internet of Things Journal, 2018,5(3):
2146−2153. [doi: 10.1109/JIOT.2018.2826006]
[23] Du W, Lei T, He Q, et al. Service capacity enhanced task offloading and resource allocation in multi-server edge computing
environment. arXiv Preprint arXiv:1903.04709, 2019.
[24] Guan P, Deng X, Liu Y, et al. Analysis of multiple clients’ behaviors in edge computing environment. IEEE Trans. on Vehicular
Technology, 2018:1−1. [doi: 10.1109/TVT.2018.2850917]
[25] Lin B, Zhu F, Zhang J, et al. A time-driven data placement strategy for a scientific workflow combining edge computing and cloud
computing. IEEE Trans. on Industrial Informatics, 2019. [doi: 10.1109/TII.2019.2905659]
[26] Ren Y, Nitu V, Liu G, et al. Efficient, dynamic multi-tenant edge computation in EdgeOS. arXiv preprint arXiv:1901.01222, 2019.