Page 52 - 《软件学报》2020年第9期
P. 52
张政馗 等:面向实时应用的深度学习研究综述 2673
[14] PRECISE center for safe AI. https://precise.seas.upenn.edu/safe-autonomy
[15] Amert T, Otterness N, Yang M, Anderson JH, Smith FD. GPU scheduling on the nvidia tx2: Hidden details revealed. In: Proc. of
the 2017 IEEE Real-Time Systems Symp. (RTSS). IEEE, 2017. 104−115.
[16] Yang M, Wang S, Bakita J, Vu T, Smith FD, Anderson JH, Frahm JM. Re-Thinking CNN frameworks for time-sensitive
autonomous-driving applications: Addressing an industrial challenge. In: Proc. of the 25th IEEE Real-Time and Embedded
Technology and Applications Symp. (RTAS). IEEE, 2019. 305−317.
[17] Han R, Zhang F, Chen LY, Zhan J. Work-in-Progress: Maximizing model accuracy in real-time and iterative machine learning. In:
Proc. of the Real-Time Systems Symp. 2018. 351−353.
[18] Alcaide S, Kosmidis L, Hernandez C, Abella J. High-Integrity GPU designs for critical real-time automotive systems. In: Proc. of
the 2019 Design, Automation & Test in Europe Conf. & Exhibition (DATE). 2019. 824−829.
[19] Bateni S, Liu C. ApNet: Approximation-aware real-time neural network. In: Proc. of the Real-Time Systems Symp. (RTSS). IEEE,
2019. 67−79.
3
[20] Zhou H, Bateni S, Liu C. S DNN: Supervised streaming and scheduling for GPU-accelerated real-time dnn workloads. In: Proc. of
the IEEE Real-Time and Embedded Technology and Applications Symp. (RTAS). IEEE, 2018. 190−201.
[21] Yang M, Otterness N, Amert T, Bakita J, Anderson JH, Smith FD. Avoiding pitfalls when using nvidia GPUS for real-time tasks in
autonomous systems. In: Proc. of the 30th Euromicro Conf. on Real-Time Systems (ECRTS). Schloss Dagstuhl—Leibniz-Zentrum
fuer Informatik, 2018. 1−21.
[22] McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics,
1943,5(4):115−133.
[23] Rosenblatt F. The perceptron: A probabilistic model for information storage and organization in the brain. In: Proc. of the
Psychological Review. 1958. 65−386.
[24] Minsky M, Papert S. Perceptrons—An Introduction to Computational Geometry. MIT Press, 1987.
[25] Sejnowski TT. The Deep Learning Revolution. MIT Press, 2018.
[26] Hinton GE. Learning distributed representations of concepts. In: Proc. of the 8th Annual Conf. of the Cognitive Science Society.
Oxford University Press, 1986. 112.
[27] Learning representation by back-propagation errors. Nature, 1986,323:533−536.
[28] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Pereira F, Burges CJC,
Bottou L, Weinberger KQ, eds. Proc. of the Advances in Neural Information Processing Systems 25. Curran Associates, Inc., 2012.
1097−1105.
[29] Zhou Z. Machine Learning. Beijing: Tsinghua University Press, 2016 (in Chinese).
[30] Nielsen M. Neural Networks and Deep Learning. Determination Press, 2015.
[31] TensorFlow. https://www.tensorflow.org/
[32] PyTorch. https://pytorch.org/
[33] Caffe. http://caffe.berkeleyvision.org/
[34] Peng JT, Lin J, Bai XL. In-Depth Understanding of Tensorflow Architecture Design and Implementation Principles. Beijing: Posts
& Telecom Press, 2018 (in Chinese).
[35] Cook S. CUDA programming: A Developer’s Guide to Parallel Computing with GPUS. San Francisco: Morgan Kaufmann
Publishers Inc., 2013.
[36] CUDA zone. https://developer.nvidia.com/cuda-zone
[37] Meet jetson, the platform for ai at the edge. https://developer.nvidia.com/embedded-computing
[38] Chen GL, Sheng M, Yang G. A survey of hardware-accelerated neural networks. Journal of Computer Research and Development,
2019,56(2):240−253 (in Chinese with English abstract).
[39] Farabet C, Martini B, Corda B, Akselrod P, Culurciello E, LeCun Y. NeuFlow: A runtime reconfigurable dataflow processor for
vision. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, 2011. 109−116.
[40] Zhang C, Prasanna VK. Frequency domain acceleration of convolutional neural networks on CPU-fpga shared memory system. In:
Proc. of the ACM/SIGDA Int’l Symp. on Field-Programmable Gate Arrays (FPGA). ACM, 2017. 35−44.
[41] Gao M, Pu J, Yang X, Horowitz M, Kozyrakis C. TETRIS: Scalable and efficient neural network acceleration with 3D memory. In:
Proc. of the Int’l Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS). ACM, 2017.
751−764.