Page 52 - 《软件学报》2020年第9期
P. 52

张政馗  等:面向实时应用的深度学习研究综述                                                           2673


         [14]     PRECISE center for safe AI. https://precise.seas.upenn.edu/safe-autonomy
         [15]     Amert T, Otterness N, Yang M, Anderson JH, Smith FD. GPU scheduling on the nvidia tx2: Hidden details revealed. In: Proc. of
             the 2017 IEEE Real-Time Systems Symp. (RTSS). IEEE, 2017. 104−115.
         [16]     Yang  M,  Wang S,  Bakita J,  Vu  T, Smith FD, Anderson JH, Frahm  JM.  Re-Thinking  CNN frameworks for  time-sensitive
             autonomous-driving applications:  Addressing  an industrial  challenge. In: Proc. of the 25th IEEE Real-Time  and  Embedded
             Technology and Applications Symp. (RTAS). IEEE, 2019. 305−317.
         [17]     Han R, Zhang F, Chen LY, Zhan J. Work-in-Progress: Maximizing model accuracy in real-time and iterative machine learning. In:
             Proc. of the Real-Time Systems Symp. 2018. 351−353.
         [18]     Alcaide S, Kosmidis L, Hernandez C, Abella J. High-Integrity GPU designs for critical real-time automotive systems. In: Proc. of
             the 2019 Design, Automation & Test in Europe Conf. & Exhibition (DATE). 2019. 824−829.
         [19]     Bateni S, Liu C. ApNet: Approximation-aware real-time neural network. In: Proc. of the Real-Time Systems Symp. (RTSS). IEEE,
             2019. 67−79.
                               3
         [20]     Zhou H, Bateni S, Liu C. S DNN: Supervised streaming and scheduling for GPU-accelerated real-time dnn workloads. In: Proc. of
             the IEEE Real-Time and Embedded Technology and Applications Symp. (RTAS). IEEE, 2018. 190−201.
         [21]     Yang M, Otterness N, Amert T, Bakita J, Anderson JH, Smith FD. Avoiding pitfalls when using nvidia GPUS for real-time tasks in
             autonomous systems. In: Proc. of the 30th Euromicro Conf. on Real-Time Systems (ECRTS). Schloss Dagstuhl—Leibniz-Zentrum
             fuer Informatik, 2018. 1−21.
         [22]     McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics,
             1943,5(4):115−133.
         [23]     Rosenblatt F.  The perceptron:  A probabilistic  model  for information storage  and organization  in the brain. In: Proc. of the
             Psychological Review. 1958. 65−386.
         [24]     Minsky M, Papert S. Perceptrons—An Introduction to Computational Geometry. MIT Press, 1987.
         [25]     Sejnowski TT. The Deep Learning Revolution. MIT Press, 2018.
         [26]     Hinton GE. Learning distributed representations of concepts. In: Proc. of the 8th Annual Conf. of the Cognitive Science Society.
             Oxford University Press, 1986. 112.
         [27]     Learning representation by back-propagation errors. Nature, 1986,323:533−536.
         [28]    Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. In: Pereira F, Burges CJC,
             Bottou L, Weinberger KQ, eds. Proc. of the Advances in Neural Information Processing Systems 25. Curran Associates, Inc., 2012.
             1097−1105.
         [29]     Zhou Z. Machine Learning. Beijing: Tsinghua University Press, 2016 (in Chinese).
         [30]     Nielsen M. Neural Networks and Deep Learning. Determination Press, 2015.
         [31]     TensorFlow. https://www.tensorflow.org/
         [32]     PyTorch. https://pytorch.org/
         [33]     Caffe. http://caffe.berkeleyvision.org/
         [34]     Peng JT, Lin J, Bai XL. In-Depth Understanding of Tensorflow Architecture Design and Implementation Principles. Beijing: Posts
             & Telecom Press, 2018 (in Chinese).
         [35]     Cook  S. CUDA  programming: A Developer’s  Guide to  Parallel Computing  with GPUS. San  Francisco: Morgan Kaufmann
             Publishers Inc., 2013.
         [36]     CUDA zone. https://developer.nvidia.com/cuda-zone
         [37]     Meet jetson, the platform for ai at the edge. https://developer.nvidia.com/embedded-computing
         [38]     Chen GL, Sheng M, Yang G. A survey of hardware-accelerated neural networks. Journal of Computer Research and Development,
             2019,56(2):240−253 (in Chinese with English abstract).
         [39]     Farabet C, Martini B, Corda B, Akselrod P, Culurciello E, LeCun Y. NeuFlow: A runtime reconfigurable dataflow processor for
             vision. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). IEEE Computer Society, 2011. 109−116.
         [40]     Zhang C, Prasanna VK. Frequency domain acceleration of convolutional neural networks on CPU-fpga shared memory system. In:
             Proc. of the ACM/SIGDA Int’l Symp. on Field-Programmable Gate Arrays (FPGA). ACM, 2017. 35−44.
         [41]      Gao M, Pu J, Yang X, Horowitz M, Kozyrakis C. TETRIS: Scalable and efficient neural network acceleration with 3D memory. In:
             Proc. of the Int’l  Conf. on Architectural Support for Programming  Languages  and  Operating Systems (ASPLOS).  ACM, 2017.
             751−764.
   47   48   49   50   51   52   53   54   55   56   57