Page 305 - 《软件学报》2020年第9期
P. 305

软件学报 ISSN 1000-9825, CODEN RUXUEW                                        E-mail: jos@iscas.ac.cn
         Journal of Software,2020,31(9):2926−2943 [doi: 10.13328/j.cnki.jos.006035]   http://www.jos.org.cn
         ©中国科学院软件研究所版权所有.                                                          Tel: +86-10-62562563


                                                    ∗
         面向主干网的网络级绿色节能机制

               1
                       1
                              1
         张金宏 ,   王兴伟 ,   易   波 ,   黄   敏  2
         1
          (东北大学  计算机科学与工程学院,辽宁  沈阳  110169)
         2 (东北大学  信息科学与工程学院,辽宁  沈阳  110819)
         通讯作者:  王兴伟, E-mail: wangxw@mail.neu.edu.cn

         摘   要:  近些年,全球范围内的互联网高能耗问题引发了持续关注,节能已成为未来互联网研究的热门议题之一.
         面向主干网,提出一种网络级绿色节能机制:一方面,在全局视图中使用最小剩余容量优先的绿色路由算法规划全局
         路由路径,这样使得网络中开启的捆绑链路数目最小,从而实现第一步节能;另一方面,在局部视图中使用绿色降序
         最佳适应算法将流量负载汇聚到捆绑链路中的最小物理链路集合,这样可以尽可能多地关闭物理链路,从而实现进
         一步节能.提出的机制在节能的同时兼顾用户QoS需求的满足,在提供QoS保证的前提下最大化节能收益.为了全面
         评估该机制,选取 3 个典型主干网拓扑:CERNET2,GéANT 和 INTERNET2,分别在高负载、中负载和低负载的情形
         下,与其他 3 种节能机制从网络功耗和网络性能(平均路由跳数、物理链路关闭数目、路由成功率和运行时间)方面
         做详尽的对比分析.仿真结果表明:该机制节能效果显著,且有令人满意的性能表现.
         关键词:  网络级节能;捆绑链路;QoS;绿色装箱问题;主干网
         中图法分类号: TP311

         中文引用格式:  张金宏,王兴伟,易波,黄敏.面向主干网的网络级绿色节能机制.软件学报,2020,31(9):2926−2943.  http://www.
         jos.org.cn/1000-9825/6035.htm
         英文引用格式: Zhang JH, Wang XW, Yi B, Huang M. Network-level green energy-saving mechanism for backbone networks.
         Ruan Jian Xue Bao/Journal of Software, 2020,31(9):2926−2943 (in Chinese). http://www.jos.org.cn/1000-9825/6035.htm

         Network-level Green Energy-saving Mechanism for Backbone Networks
                       1
                                               1
                                       1
         ZHANG Jin-Hong ,   WANG Xing-Wei ,   YI Bo ,   HUANG Min 2
         1
          (School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China)
         2
          (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)
         Abstract:    Recently,  the world-wide  huge energy consumption  of  Internet  has  incurred a sustained attention, and energy  saving  has
         turned into one of the hot issues in the upcoming future networks in the past few years. A network-level green energy-saving mechanism
         over the backbone networks is proposed in this study: for one thing, in the global view, a smallest remaining capacity first (SRCF) based
         green routing algorithm is used to plan the global routing paths in the networks, which makes the number of the bundled links powered
         minimum and thus realizes the first step of energy saving; for the other, in the local view, a green-best fit deceasing (G-BFD) algorithm is
         used to gather traffic loads flowing through a bundled link to the smallest set of physical links, which enables the physical links powered
         off  as much as  possible and  thus implements  the further energy  saving. In addition  to  saving  energy, the  proposed mechanism pays
         attention to guaranteeing the user’s requirements on quality of service (QoS), that is, the mechanism maximizes the benefits of energy
         saving under the premise of providing QoS guarantee. In order to evaluate the proposed mechanism in the study comprehensively, the
         topologies of three typical backbone  networks, namely  CERNET2,  GéANT,  and INTERNET2,  are  chosen.  Under the different  traffic
         status of high load, medium load, and low load, the proposed mechanism is compared with the other three energy-saving mechanisms with

            ∗  基金项目:  国家重点研发计划(2017YFB0801701);  国家自然科学基金(61872073);  辽宁省兴辽英才计划(XLYC1902010)
              Foundation item: National Key Research and Development  Program of China  (2017YFB0801701); National Natural  Science
         Foundation of China (61872073); LiaoNing Revitalization Talents Program (XLYC1902010)
              收稿时间:   2019-08-19;  修改时间: 2019-11-08, 2020-02-01;  采用时间: 2020-03-16; jos 在线出版时间: 2020-04-21
   300   301   302   303   304   305   306   307   308   309   310