Page 299 - 《软件学报》2020年第9期
P. 299
2920 Journal of Software 软件学报 Vol.31, No.9, September 2020
一个不可信场景下构造一个可信计算环境,仍然具有非常巨大的应用前景,因此,通过本文的综述与介绍,也希
望有更多的研究者,尤其是数据库研究者,更多地开展区块链数据管理研究工作.
References:
[1] Nakamoto S. Bitcoin: A peer-to-peer electronic cash system. 2009. http://www.bitcoin.org/bitcoin.pdf
[2] Wood G. Ethereum: A secure decentralised generalised transaction ledger eip-150 revision (759dccd - 2017-08-07).
[3] IBM Blockchain. Enterprise blockchain solutions and services. 2018. https://www.ibm.com/blockchain
[4] Oracle. Transforming the enterprise with oracle blockchain platform. 2018. https://www.oracle.com/cloud/blockchain/
[5] SAP. Blockchain applications and services. 2018. https://www.sap.com/products/leonardo/blockchain.html
[6] Huawei. Huawei blockchain whitepaper, toward a trusted digital world. 2018. https://static.huaweicloud.com/upload/iles/pdf/
20180416/2018041614245061761.pdf
[7] Berger C, Penzenstadler B, Dro¨gehorn O. On using blockchains for safety-critical systems. In: Proc. of the 4th Int’l Workshop on
Software Engineering for Smart Cyber-Physical Systems (SEsCPS 2018). New York: ACM, 2018. 30−36.
[8] Liu YZ, Liu YH. Security provenance model for RFID big data based on blockchain. Computer Science, 2018,45(11A):
367−368,381 (in Chinese with English abstract).
[9] Azaria A, Ekblaw A, Vieira T, Lippman A. Medrec: Using blockchain for medical data access and permission management. In:
Proc. of the 2nd Int’l Conf. on Open and Big Data (OBD 2016). Vienna, 2016. 25−30.
[10] Wu S, Du J. Electronic medical record security sharing model based on blockchain. In: Proc. of the 3rd Int’l Conf. on Cryptography,
Security and Privacy (ICCSP 2019). New York: ACM, 2019. 13−17.
[11] Intellectual property blockchain platform. 2018. https://www.bernstein.io/
[12] Underwood S. Blockchain beyond Bitcoin. Communications of the ACM, 2016,59(11):15−17.
[13] Zakhary V, Amiri MJ, Maiyya S, Agrawal D, El Abbadi A. Towards global asset management in blockchain systems. CoRR, vol.
abs/1905.09359, 2019.
[14] Ateniese G, Faonio A, Magri B, de Medeiros B. Certified Bitcoins. In: Proc. of the Applied Cryptography and Network Security.
2014. 80−96.
[15] Garay J, Kiayias A, Leonardos N. The Bitcoin backbone protocol: Analysis and applications. In: Proc. of the Advances in
Cryptology EUROCRYPT. 2015. 281−310.
[16] Eyal I, Gencer AE, Sirer EG, van Renesse R. Bitcoin-NG: A scalable blockchain protocol. In: Proc. of the USENIX NSDI. 2016.
45−59.
[17] Pirlea G, Sergey I. Mechanising blockchain consensus. In: Proc. of the ACM SIGPLAN Int’l Conf. on Certified Programs and
Proofs. ACM, 2018. 78−90.
[18] Dong C, Wang Y, Aldweesh A, McCorry P, van Moorsel A. Betrayal, distrust, and rationality: Smart counter-collusion contracts
for verifiable cloud computing. In: Proc. of the ACM CCS. ACM, 2017. 211−227.
[19] Camenisch J, Drijvers M, Dubovitskaya M. Practical unsecure delegatable credentials with attributes and their application to
blockchain. In: Proc. of the ACM CCS. ACM, 2017. 683−699.
[20] Zhang R, Xue R, Liu L. Security and privacy on blockchain. CoRR, vol. abs/1903.07602, 2019.
[21] Kiffer L, Rajaraman R, Shelat A. A better method to analyze blockchain consistency. In: Proc. of the 2018 ACM SIGSAC Conf. on
Computer and Communications Security (CCS 2018). New York: ACM, 2018. 729−744.
[22] Wang S, Dinh TTA, Lin Q, Xie Z, Zhang M, Cai Q, Chen G, Ooi BC, Ruan P. Forkbase: An efficient storage engine for blockchain
and forkable applications. Proc. of the VLDB Endowment, 2018,11(10):1137−1150.
[23] Dinh TTA, Wang J, Chen G, Liu R, Ooi BC, Tan KL. Blockbench: A framework for analyzing private blockchains. In: Proc. of the
2017 ACM Int’l Conf. on Management of Data (SIGMOD 2017). New York: ACM, 2017. 1085−1100.
[24] Lamport L. Paxos made simple. ACM SIGACT News (Distributed Computing Column), 2001,32(4):51−58.
[25] Ongaro D, Ousterhout J. In search of an understandable consensus algorithm. In: Proc. of the 2014 USENIX Conf. on USENIX
Annual Technical Conf. (USENIX ATC 2014). Berkeley: USENIX Association, 2014. 305−320.