Page 229 - 《软件学报》2020年第9期
P. 229

2850                                 Journal of Software  软件学报 Vol.31, No.9,  September 2020

         [44]    Thung F, Le TDB, Kochhar PS, Lo D. BugLocalizer: Integrated tool support for bug localization. In: Proc. of the Joint Meeting of
             the European Software Engineering Conf. and the Symp. on the Foundations of Software Engineering. 2014. 767−770. [doi: 10.
             1145/2635868.2661678]
         [45]    Le  TDB,  Oentaryo RJ, Lo D.  Information  retrieval and  spectrum based  bug  localization: Better together. In: Proc.  of the Joint
             Meeting of the European Software Engineering Conf. and the Symp. on the Foundations of Software Engineering. 2015. 579−590.
             [doi: 10.1145/2786805.2786880]
         [46]    Chaparro  O,  Lu J,  Zampetti F, Moreno  L.  Detecting  missing  information in bug descriptions. In: Proc. of the Int’l Symp. on
             Foundations of Software Engineering. 2017. 396−407. [doi: 10.1145/3106237.3106285]
         [47]    Ye X, Bunescu R, Liu C. Learning to rank revelant files for bug reports using domain knowledge. In: Proc. of the Joint Meeting of
             the European Software Engineering Conf. and the Symp. on the Foundations of Software Engineering. 2014. 689−699. [doi: 10.
             1145/2635868.2635874]
         [48]    Kochhar PS, Tian Y, Lo D. Potential biases in bug localization: Do they matter? In: Proc. of the Int’l Conf. on Automated Software
             Engineering. 2014. 803−814. [doi: 10.1145/2642937.2642997]
         [49]    Nguyen AT, Nguyen TT, SI-Kofahi J, Nguyen HV, Nguyen TN. A topic-based approach for narrowing the search space of buggy
             files from a bug report. In: Proc. of the Int’l Conf. on Automated Software Engineering. 2011. 263−272. [doi: 10.1109/ASE.2011.
             6100062]
         [50]    Wang SW, Lo  D,  Lawall J.  Compositional vector space  models for improved bug localization.  In: Proc. of the  Int’l Conf. on
             Software Maintenance and Evolution. 2014. 171−180. [doi: 10.1109/ICSME.2014.39]
         [51]    Chaparro O, Florez JM, Marcus A. Using observed behavior to reformulate queries during text retrieval-based bug localization. In:
             Proc. of the Int’l Conf. on Software Maintenance and Evolution. 2017. 376−387. [doi: 10.1109/ICSME.2017.100]
         [52]    Lawrie DJ, Binkley DW. On the value of bug reports for retrieval-based bug localization. In: Proc. of the Int’l Conf. on Software
             Maintenance and Evolution. 2018. 524−528. [doi: 10.1109/ICSME.2018.00048]
         [53]    Mills C, Pantiuchina J, Parra E, Bavota G, Haiduc S. Are bug reports enough for text retrieval-based bug localization? In: Proc. of
             the Int’l Conf. on Software Maintenance and Evolution. 2018. 381−392. [doi: 10.1109/ICSME.2018.00046]
         [54]    Dao T, Zhang LM, Meng N. How does execution information help with information-retrieval based bug localization? In: Proc. Int’l
             Conf. on Program Comprehension. 2017. 241−250. [doi: 10.1109/ICPC.2017.29]
         [55]    Lam AN, Nguyen AT, Nguyen HA, Nguyen TN. Bug localization with combination of deep learning and information retrieval. In:
             Proc. Int’l Conf. on Program Comprehension. 2017. 218−229. [doi: 10.1109/ICPC.2017.24]
         [56]    Takahashi A, Sae-Lim N, Hayashi S, Saeki M. A preliminary study on using code smells to improve bug localization. In: Proc. Int’l
             Conf. on Program Comprehension. 2018. 324−327. [doi: 10.1145/3196321.3196361]
         [57]     Beard MD. Extending bug localization using information retrieval and code clone location techniques. In: Proc. of the Working
             Conf. on Reverse Engineering. 2011. 425−428. [doi: 10.1109/WCRE.2011.61]
         [58]     Beard MD, Kraft NA, Etzkorn LH, Lukins SK. Measuring the accuracy of information retrieval based bug localization techniques.
             In: Proc. of the Working Conf. on Reverse Engineering. 2011. 124−128. [doi: 10.1109/WCRE.2011.23]
         [59]    Davies S, Roper M, Wood M. Using bug report similarity to enhance bug localisation. In: Proc. of the Working Conf. on Reverse
             Engineering. 2012. 125−134. [doi: 10.1109/WCRE.2012.22]
         [60]     Sisman B, Kak AC. Incorporating version histories in information retrieval based bug localization. In: Proc. of the Working Conf.
             on Mining Software Repositories. 2012. 50−59. [doi: 10.1109/MSR.2012.6224299]
         [61]    Sisman B, Kak AC. Assisting code search with automatic query reformulation for bug localization. In: Proc. of the Working Conf.
             on Mining Software Repositories. 2013. 309−318. [doi: 10.1109/MSR.2013.6624044]
         [62]    Wang SH,  Khomh F,  Zou  Y. Improving bug localization using  correlations in  crash reports. In: Proc. of the  Working  Conf. on
             Mining Software Repositories. 2013. 247−256. [doi: 10.1109/MSR.2013.6624036]
         [63]    Rath M, Lo D, Mäder P. Analyzing requirements and traceability information to improve bug localization. In: Proc. of the Working
             Conf. on Mining Software Repositories. 2018. 442−453. [doi: 10.1145/3196398.3196415]
         [64]    Xiao Y, Keung J. Improving bug localization with character-level convolutional neural network and recurrent neural network. In:
             Proc. of the Asia-Pacific Software Engineering Conf. 2018. 703−704. [doi: 10.1109/APSEC.2018.00097]
   224   225   226   227   228   229   230   231   232   233   234