Page 178 - 《软件学报》2020年第9期
P. 178

陈晋音  等:基于 PSO 的路牌识别模型黑盒对抗攻击方法                                                    2799


         References:
          [1]    Chen CY,  Seff  A,  Kornhauser A, Xiao JX. DeepDriving: Learning affordance for  direct  perception  in autonomous  driving.  In:
             Agarwal S, ed. Proc. of the IEEE Int’l Conf. on Computer Vision. Santiago: IEEE, 2015. 2722−2730. [doi: 10.1109/ICCV.2015.
             312]
          [2]    Schroff F, Kalenichenko D, Philbin J. FaceNet: A unified embedding for face recognition and clustering. In: Chadowitz C, ed. Proc.
             of the IEEE Conf. on Computer Vision and Pattern Recognition. Boston: CVPR, 2015. 815−823.
          [3]    Graves A, Jaitly N, Mohamed AR. Hybrid speech recognition with deep bidirectional LSTM. In: Cernocky H, ed. Proc. of the 2013
             IEEE Workshop on Automatic Speech Recognition and Understanding. Olomouc: IEEE, 2013. 273−278. [doi: 10.1109/ASRU.2013.
             6707742]
          [4]    Qing SH.  Research progress on  Android security.  Ruan Jian  Xue  Bao/Journal of Software, 2016,27(1):45−71 (in  Chinese with
             English abstract). http://www.jos.org.cn/1000-9825/4914.htm [doi: 10.13328/j.cnki.jos.004914]
          [5]    Chen JY, Lin X, Wu YY, Chen YX, Zheng HB, Su MM, Yu SQ, Ruan ZY. Double layered recommendation algorithm based on
             fast density clustering: Case  study on Yelp social  networks  dataset.  In: Malavé CO, ed. Proc.  of the  2017 Int’l  Workshop  on
             Complex Systems and Networks (IWCSN). Doha: IEEE, 2017. 242−252.
          [6]    Chen JY, Yang DY, Feng ZL. T-cell detector maturation algorithm based on cooperative co-evolution GA. In: Ding YS, ed. Proc.
             of the 7th Int’l Conf. on Natural Computation. Shanghai: IEEE, 2011. 2295−2299. [doi: 10.1109/ICNC.2011.6022387]
          [7]    Wang L, Sng D. Deep learning algorithms with applications to video analytics for a smart city: A survey. arXiv Preprint arXiv:
             1512.03131, 2015.
          [8]    Miao QG, Liu  RY,  Zhao PP,  Li  YN, Sun  EQ. A  semi-supervised image  classification  model based on improved  ensemble
             projection algorithm. IEEE Access, 2018,6:1372−1379.
          [9]    Liu RY,  Song JF,  Miao QG, Xu  PF, Xue Q. Road centerlines extraction  from  high  resolution images  based  on an  improved
             directional segmentation and road probability. Neurocomputing, 2016,212:88−95.
         [10]    Gong MG, Zhou ZQ, Ma JJ. Change detection in synthetic aperture radar images based on deep neural networks. IEEE Trans. on
             Image, 2012,21(4):2141−2151. [doi: 10.1109/TIP.2011.2170702]
         [11]    Bao RD, Yu H, Zhu DF, Huang SF, Sun Y, Liu Y. Automatic makeup with region sensitive generative adversarial networks. Ruan
             Jian Xue Bao/Journal of Software, 2019,30(4):896−913 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5666.
             htm [doi: 10.13328/j.cnki.jos.005666]
         [12]    Wan B, Wang Q, Gao YX. Error diffusion halftone algorithm based on image segmentation. Journal of Xidian University, 2009,
             36(3):496−546 (in Chinese with English abstract).
         [13]    Wang Q, Dong BY, Tian YM. A motion object detection algorithm for MPEG-4 video. Journal of Xidian University, 2007,34(6):
             869−872 (in Chinese with English abstract).
         [14]    Chen JY, Wang Z, Cheng KH, Zheng HB, Pan AT. Out-of-Store object detection based on deep learning. In: Huang L, ed. Proc. of
             the 2019 11th Int’l Conf. on Machine Learning and Computing. New York: ACM, 2019. 423−428.
         [15]    Stallkamp  J,  Schlipsing M,  Salmen J,  Igel C. Man  vs. computer: Benchmarking machine learning algorithms  for  traffic  sign
             recognition. Neural Networks: The Official Journal of the Int’l Neural Network Society, 2012,32:323−332.
         [16]    Baluja S, Fischer I. Adversarial transformation networks: Learning to generate adversarial examples. arXiv preprint arXiv:1703.
             09387, 2017.
         [17]    Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow I, Fergus R. Intriguing properties of neural networks. arXiv
             preprint arXiv:1312.6199, 2013.
         [18]    Goodfellow IJ, Shlens J, Szegedy C. Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.
         [19]    Carlini N, Wagner D. Towards evaluating the robustness of neural networks. In: Butler KRB, ed. Proc. of the 2017 IEEE Symp. on
             Security and Privacy (SP). San Jose: IEEE, 2017. 39−57. [doi: 10.1109/SP.2017.49]
         [20]    Moosavi-Dezfooli SM, Fawzi A, Frossard P. Deepfool: A simple and accurate method to fool deep neural networks. In: Bajcsy R,
             ed. Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Las Vegas: CVPR, 2016. 2574−2582.
         [21]    Moosavi-Dezfooli SM, Fawzi A, Fawzi O, Frossard P. Universal adversarial perturbations. In: Chellappa R, ed. Proc. of the IEEE
             Conf. on Computer Vision and Pattern Recognition. Honolulu: CVPR, 2017. 1765−1773.
   173   174   175   176   177   178   179   180   181   182   183