Page 32 - 《软件学报》2020年第12期
P. 32

3698                                Journal of Software  软件学报 Vol.31, No.12, December 2020























                                 Fig.2    ISReal’s interface for computing u 30  of Eq.(1)
                                  图 2   ISReal 计算迭代式(1)的 u 30 时的运行环境
             对于上述几个案例来说,均预先知道极限值,因此通过 DecimalPlaces 可以对需要计算的小数位数进行一次
         性设置.若预先不清楚极限值,那么可以通过增大 DecimalPlaces 的值来获得极限值.

         5    结束语

             本文给出了一个通用的算法,利用它可以解决一些用其他方法解决不了的循环迭代难题.对于 Kahan 提出
                                                                               [3]
         的问题:“How can distress caused by roundoff be diagnosed reliably? How can it be cured?” ,显然,本文的算法是
         解决方案之一.通过与本算法(或软件)的计算结果的比较,程序员可以了解或验证其循环迭代程序运行结果的
         正确与否.

         致谢  感谢与日本新潟大学刘学峰博士的讨论.


         References:
         [1]     Muller JM. Arithmétique des Ordinateurs. Paris: Masson, 1989 (in French).
         [2]     Muller JM, Brisebarre N, Dinechin FD, et al. Handbook of Floating-point Arithmetic. Boston: Birkhauser Boston, 2010. 8−10.
         [3]     Kahan W. How futile  are  mindless  assessments of roundoff in floating-point  computation? 2006. http://www.cs.berkeley.edu/~
             wkahan/Mindless.pdf
         [4]     Benz F, Hildebrandt A, Hack S. A Dynamic program analysis to find floating-point accuracy problems. In: Proc. of the 2012 ACM
             SIGPLAN Conf. on Programming Language Design and Implementation. 2012. 453−462.
         [5]     Zhao SZ. Reasons of miscalculation in floating point arithmetic. Sciencepaper Online. 2017 (in Chinese with English abstract).
             http://www.paper.edu.cn/releasepaper/content/201707-86
         [6]     Zhao SZ. CuoShu of six binary basic elementary operations and functions. Sciencepaper Online. 2019. (in Chinese with English
             abstract) http://www.paper.edu.cn/releasepaper/content/201910-3
         [7]     Zhao SZ. A reliable computing algorithm and its software ISReal for arithmetic expressions. Scientia Sinica Informationis, 2016,
             46(6):698−713 (in Chinese with English abstract).
         [8]     Zhao SZ, Liu XF, Song F. Error-Controlled computation of expressions. In: Proc. of the 18th Int’l Symp. on Scientific Computing,
             Computer Arithmetic, and Verified Numerical Computations. 2018. 172−173.

         附中文参考文献:
         [5]  赵世忠.浮点运算错误计算原因.中国科技论文在线.2017. http://www.paper.edu.cn/releasepaper/content/201707-86
   27   28   29   30   31   32   33   34   35   36   37