Page 313 - 《软件学报》2020年第12期
P. 313
刘宇男 等:基于级联密集网络的轮廓波变换域图像复原 3979
[29] Hui Z, Wang XM, Gao XB. Fast and accurate single image super-resolution via information distillation network. In: Proc. of the
IEEE Int’l Conf. on Computer Vision and Pattern Recognition (CVPR). 2018. 723−731. [doi: 10.1109/CVPR.2018.00082]
[30] Ahn N, Kang B, Sohn KA. Fast, accurate, and lightweight super-resolution with cascading residual network. In: Proc. of the
European Conf. on Computer Vision (ECCV). 2018. 256−272. [doi: 10.1007/978-3-030-01249-6_16]
[31] Lim B, Son S, Kim H, Nah S, Lee KM. Enhanced deep residual networks for single image super-resolution. In: Proc. of the IEEE
Int’l Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW). 2017. 1132−1140. [doi: 10.1109/CVPRW.
2017.151]
[32] Li JC, Fang FM, Mei KF, Zhang GX. Multi-Scale residual network for image super-resolution. In: Proc. of the European Conf. on
Computer Vision (ECCV). 2018. 527−542. [doi: 10.1007/978-3-030-01237-3_32]
[33] Zhang YL, Tian YP, Kong Y, Zhong BN, Fu Y. Residual dense network for image super-resolution. In: Proc. of the IEEE Int’l
Conf. on Computer Vision and Pattern Recognition (CVPR). 2018. 2472−2481. [doi: 10.1109/CVPR.2018.00262]
[34] Tai Y, Yang J, Liu XM, Xu CY. MemNet: A persistent memory network for image restoration. In: Proc. of the IEEE Int’l Conf. on
Computer Vision (ICCV). 2017. 4549−4557. [doi: 10.1109/ICCV.2017.486]
[35] Tai Y, Yang J, Liu XM. Image super-resolution via recursive residual network. In: Proc. of the IEEE Int’l Conf. on Computer
Vision and Pattern Recognition (CVPR). 2017. 2790−2798. [doi: 10.1109/CVPR.2017.298]
[36] He KM, Zhang XY, Ren SQ, Sun J. Deep residual learning for image recognition. In: Proc. of the IEEE Int’l Conf. on Computer
Vision and Pattern Recognition (CVPR). 2016. 770−778. [doi: 10.1109/CVPR.2016.90]
[37] Tong T, Li Gen, Liu XJ, Gao QQ. Image super-resolution using dense skip connections. In: Proc. of the IEEE Int’l Conf. on
Computer Vision (ICCV). 2017. 4809−4817. [doi: 10.1109/ICCV.2017.514]
[38] Huang G, Liu Z, Maaten LVD, Weinberger KQ. Densely connected convolutional networks. In: Proc. of the IEEE Int’l Conf. on
Computer Vision and Pattern Recognition (CVPR). 2017. 2261−2269. [doi: 10.1109/CVPR.2017.243]
[39] Szegedy C, Liu W, Jia YQ, Sermaner P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with
convolutions. In: Proc. of the IEEE Int’l Conf. on Computer Vision and Pattern Recognition (CVPR). 2015. 1−9. [doi: 10.1109/
CVPR.2015.7298594]
[40] Kim J, Lee JK, Lee KM. Accurate image super-resolution using very deep convolutional networks. In: Proc. of the IEEE Int’l Conf.
on Computer Vision and Pattern Recognition (CVPR). 2016. 1646−1654. [doi: 10.1109/CVPR.2016.182]
[41] Kim J, Lee JK, Lee KM. Deeply-Recursive convolutional network for image super-resolution. In: Proc. of the IEEE Int’l Conf. on
Computer Vision and Pattern Recognition (CVPR). 2016. 1637−1645. [doi: 10.1109/CVPR.2016.181]
[42] Jain V, Seung S. Natural image denoising with convolutional networks. In: Proc. of the Advances in Neural Information Processing
Systems (NIPS). 2009. 769−776.
[43] Agostinelli F, Anderson MR, Lee H. Adaptive multi-column deep neural networks with application to robust image denoising. In:
Proc. of the Advances in Neural Information Processing Systems (NIPS). 2013. 1493−1501.
[44] Xie J, Xu L, Chen E. Image denoising and inpainting with deep neural networks. In: Proc. of the Advances in Neural Information
Processing Systems (NIPS). 2012. 341−349.
[45] Mao XJ, Shen CH, Yang YB. Image restoration using very deep convolutional encoder-decoder networks with symmetric skip
connections. In: Proc. of the Advances in Neural Information Processing Systems (NIPS). 2016. 2802−2810.
[46] Santhanam V, Morariu VI, Davis LS. Generalized deep image to image regression. In: Proc. of the IEEE Int’l Conf. on Computer
Vision and Pattern Recognition (CVPR). 2017. 5395−5405. [doi: 10.1109/CVPR.2017.573]
[47] Zhang K, Zuo W, Gu S, Zhang L. Learning deep CNN denoiser prior for image restoration. In: Proc. of the IEEE Int’l Conf. on
Computer Vision and Pattern Recognition (CVPR). 2017. 2808−2817. [doi: 10.1109/CVPR.2017.300]
[48] Dong C, Deng YB, Loy CC, Tang XO. Compression artifacts reduction by a deep convolutional network. In: Proc. of the IEEE Int’l
Conf. on Computer Vision (ICCV). 2015. 576−584. [doi: 10.1109/ICCV.2015.73]
[49] Chen Y, Pock T. Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration. IEEE Trans.
on Pattern Analysis and Machine Intelligence (T-PAMI), 2017,39(6):1256−1272. [doi: 10.1109/TPAMI.2016.2596743]
[50] Guo J, Chao HY. Building dual-domain representations for compression artifacts reduction. In: Proc. of the European Conf. on
Computer Vision (ECCV). 2016.628−644. [doi: 10.1007/978-3-319-46448-0_38]