Page 313 - 《软件学报》2020年第12期
P. 313

刘宇男  等:基于级联密集网络的轮廓波变换域图像复原                                                       3979


         [29]    Hui Z, Wang XM, Gao XB. Fast and accurate single image super-resolution via information distillation network. In: Proc. of the
             IEEE Int’l Conf. on Computer Vision and Pattern Recognition (CVPR). 2018. 723−731. [doi: 10.1109/CVPR.2018.00082]
         [30]    Ahn N, Kang B, Sohn KA. Fast, accurate, and lightweight super-resolution  with cascading  residual  network.  In:  Proc. of  the
             European Conf. on Computer Vision (ECCV). 2018. 256−272. [doi: 10.1007/978-3-030-01249-6_16]
         [31]    Lim B, Son S, Kim H, Nah S, Lee KM. Enhanced deep residual networks for single image super-resolution. In: Proc. of the IEEE
             Int’l  Conf. on  Computer Vision  and Pattern Recognition Workshops (CVPRW). 2017.  1132−1140. [doi:  10.1109/CVPRW.
             2017.151]
         [32]    Li JC, Fang FM, Mei KF, Zhang GX. Multi-Scale residual network for image super-resolution. In: Proc. of the European Conf. on
             Computer Vision (ECCV). 2018. 527−542. [doi: 10.1007/978-3-030-01237-3_32]
         [33]    Zhang YL, Tian YP, Kong Y, Zhong BN, Fu Y. Residual dense network for image super-resolution. In: Proc. of the IEEE Int’l
             Conf. on Computer Vision and Pattern Recognition (CVPR). 2018. 2472−2481. [doi: 10.1109/CVPR.2018.00262]
         [34]    Tai Y, Yang J, Liu XM, Xu CY. MemNet: A persistent memory network for image restoration. In: Proc. of the IEEE Int’l Conf. on
             Computer Vision (ICCV). 2017. 4549−4557. [doi: 10.1109/ICCV.2017.486]
         [35]    Tai  Y,  Yang J,  Liu XM. Image super-resolution via recursive residual network. In: Proc. of the IEEE Int’l Conf. on  Computer
             Vision and Pattern Recognition (CVPR). 2017. 2790−2798. [doi: 10.1109/CVPR.2017.298]
         [36]    He KM, Zhang XY, Ren SQ, Sun J. Deep residual learning for image recognition. In: Proc. of the IEEE Int’l Conf. on Computer
             Vision and Pattern Recognition (CVPR). 2016. 770−778. [doi: 10.1109/CVPR.2016.90]
         [37]    Tong T, Li Gen,  Liu XJ, Gao QQ. Image  super-resolution  using  dense skip connections. In:  Proc.  of  the  IEEE  Int’l Conf.  on
             Computer Vision (ICCV). 2017. 4809−4817. [doi: 10.1109/ICCV.2017.514]
         [38]    Huang G, Liu Z, Maaten LVD, Weinberger KQ. Densely connected convolutional networks. In: Proc. of the IEEE Int’l Conf. on
             Computer Vision and Pattern Recognition (CVPR). 2017. 2261−2269. [doi: 10.1109/CVPR.2017.243]
         [39]    Szegedy  C, Liu  W, Jia YQ, Sermaner P,  Reed S,  Anguelov  D,  Erhan D, Vanhoucke  V,  Rabinovich  A. Going deeper with
             convolutions. In: Proc. of the IEEE Int’l Conf. on Computer Vision and Pattern Recognition (CVPR). 2015. 1−9. [doi: 10.1109/
             CVPR.2015.7298594]
         [40]    Kim J, Lee JK, Lee KM. Accurate image super-resolution using very deep convolutional networks. In: Proc. of the IEEE Int’l Conf.
             on Computer Vision and Pattern Recognition (CVPR). 2016. 1646−1654. [doi: 10.1109/CVPR.2016.182]
         [41]    Kim J, Lee JK, Lee KM. Deeply-Recursive convolutional network for image super-resolution. In: Proc. of the IEEE Int’l Conf. on
             Computer Vision and Pattern Recognition (CVPR). 2016. 1637−1645. [doi: 10.1109/CVPR.2016.181]
         [42]    Jain V, Seung S. Natural image denoising with convolutional networks. In: Proc. of the Advances in Neural Information Processing
             Systems (NIPS). 2009. 769−776.
         [43]    Agostinelli F, Anderson MR, Lee H. Adaptive multi-column deep neural networks with application to robust image denoising. In:
             Proc. of the Advances in Neural Information Processing Systems (NIPS). 2013. 1493−1501.
         [44]    Xie J, Xu L, Chen E. Image denoising and inpainting with deep neural networks. In: Proc. of the Advances in Neural Information
             Processing Systems (NIPS). 2012. 341−349.
         [45]    Mao XJ,  Shen CH, Yang YB.  Image  restoration  using very  deep convolutional encoder-decoder  networks with  symmetric  skip
             connections. In: Proc. of the Advances in Neural Information Processing Systems (NIPS). 2016. 2802−2810.
         [46]    Santhanam V, Morariu VI, Davis LS. Generalized deep image to image regression. In: Proc. of the IEEE Int’l Conf. on Computer
             Vision and Pattern Recognition (CVPR). 2017. 5395−5405. [doi: 10.1109/CVPR.2017.573]
         [47]    Zhang K, Zuo W, Gu S, Zhang L. Learning deep CNN denoiser prior for image restoration. In: Proc. of the IEEE Int’l Conf. on
             Computer Vision and Pattern Recognition (CVPR). 2017. 2808−2817. [doi: 10.1109/CVPR.2017.300]
         [48]    Dong C, Deng YB, Loy CC, Tang XO. Compression artifacts reduction by a deep convolutional network. In: Proc. of the IEEE Int’l
             Conf. on Computer Vision (ICCV). 2015. 576−584. [doi: 10.1109/ICCV.2015.73]
         [49]    Chen Y, Pock T. Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration. IEEE Trans.
             on Pattern Analysis and Machine Intelligence (T-PAMI), 2017,39(6):1256−1272. [doi: 10.1109/TPAMI.2016.2596743]
         [50]    Guo J,  Chao  HY.  Building dual-domain representations for  compression  artifacts reduction.  In: Proc. of the  European  Conf. on
             Computer Vision (ECCV). 2016.628−644. [doi: 10.1007/978-3-319-46448-0_38]
   308   309   310   311   312   313   314   315   316   317   318