Page 300 - 《软件学报》2020年第12期
P. 300
3966 Journal of Software 软件学报 Vol.31, No.12, December 2020
Table 1 Comparative analysis of secure interval computing protocols
表 1 保密区间计算协议间的对比分析
协议 解决问题的范围 是否彻底解决所提出的问题 是否需要调用百万富翁协议 是否是新问题
文献[20]中的协议 有理数 9 9 ×
文献[21]中的协议 声称实数 × × ×
Π 1 有理数 9 × ×
Π 2 有理数 9 × 9
Π 3 有理数 9 × 9
注:9表示具有某种性能,×表示不具有某种性能
6 结束语
本文首先提出数轴上的保密关系测定问题应当分为 3 个值得研究的子问题:(1) 点与区间关系的保密测定;
(2) 多维点与区间保密关系测定;(3) 区间与区间关系的保密测定.然后采用“两个数的安全比值与 1 的关系判
定两个数的大小”的方法,基于同态加密设计了 3 个高效的保密区间计算协议.最后,采用模拟范例(ideal/real)分
析了 3 个协议的安全性.分析表明:(1) 这 3 个协议突破了 Paillier 等加密方案不能进行保密差值计算的瓶颈;(2)
这 3 个协议还可以作为基础模块用于解决其他若干安全多方计算问题,例如保密点与圆环区域关系判定问题、
点与凸多边形位置关系判定问题、保密近感探测问题等.而如何解决无理数轴上的一个无理数一次同时与两个
无理数的安全比较依然是个开问题,需要进一步探索解决.
References:
[1] Yao ACC. Protocols for secure computations. In: Proc. of the 23rd Annual Symp. on Foundations of Computer Science (SFCS’82).
Washington: IEEE Computer Society Press, 1982. 160−164.
[2] Liu S, Qu Q, Chen L, Ni LM. SMC: A practical schema for privacy-preserved data sharing over distributed data streams. IEEE
Trans. on Big Data, 2015,1(2):68−81.
[3] Xu L, Jiang C, Chen Y, Wang J, Ren Y. A framework for categorizing and applying privacy-preservation techniques in big data
mining. Computer, 2016,49(2):54−62.
[4] Xu L, Jiang C, Wang J, Yuan J, Ren Y. Information security in big data: privacy and data mining. IEEE Access, 2014,2:1149−1176.
[5] Sharma S, Chen K, Sheth A. Toward practical privacy-preserving analytics for IoT and cloud-based healthcare systems. IEEE
Internet Computing, 2018,22(2):42−51.
[6] Zhang L, Li XY, Liu K, Jung T, Liu YH. Message in a sealed bottle: Privacy preserving friending in mobile social networks. IEEE
Trans. on Mobile Computing, 2015,14(9):1888−1902.
[7] Zhang L, Jung T, Liu C, Li X, Liu Y. Pop: Privacy-preserving outsourced photo sharing and searching for mobile devices. In: Proc.
of the 2015 IEEE 35th Int’l Conf. on Distributed Computing Systems. Washington: IEEE, 2015. 308−317.
[8] Saranya K, Premalatha K, Rajasekar SS. A survey on privacy preserving data mining. In: Proc. of the 2015 2nd Int’l Conf. on
Electronics and Communication Systems (ICECS). Washington: IEEE, 2015. 1740−1744.
[9] Boudot F, Schoenmakers B, Traore J. A fair and efficient solution to the socialist millionaires’ problem. Discrete Applied
Mathematics, 2001,111(1-2):23−36.
[10] Fischlin M. A cost-effective pay-per-multiplication comparison method for millionaires. In: Proc. of the Cryptographers’ Track at
the RSA Conf. Berlin, Heidelberg: Springer-Verlag, 2001. 457−471.
[11] Goldwasser S, Micali S. Probabilistic encryption. Journal of Computer and System Sciences, 1984,28(2):270−299.
[12] Ioannidis I, Grama A. An efficient protocol for Yao’s millionaires’ problem. In: Proc. of the 36th Annual Hawaii Int’l Conf. on
IEEE. Washington: IEEE, 2003.
[13] Li SD, Dai YQ, You QY. Efficient solution to Yao’s Millionaires’ problem. Dianzi Xuebao (Acta Electronica Sinica), 2005,33(5):
769−773 (in Chinese with English abstract).
[14] Lin HY, Tzeng WG. An efficient solution to the millionaires’ problem based on homomorphic encryption. In: Proc. of the Int’l Conf.
on Applied Cryptography and Network Security. Berlin, Heidelberg: Springer-Verlag, 2005. 456−466.
[15] Garay J, Schoenmakers B, Villegas J. Practical and secure solutions for integer comparison. In: Proc. of the Int’l Workshop on
Public Key Cryptography. Berlin, Heidelberg: Springer-Verlag, 2007. 330−342.
[16] Li SD, Wang DS. Efficient secure multiparty computation based on homomorphic encryption. Dianzi Xuebao (Acta Electronica
Sinica), 2013,41(4):798−803 (in Chinese with English abstract).