Page 300 - 《软件学报》2020年第12期
P. 300

3966                                Journal of Software  软件学报 Vol.31, No.12, December 2020

                          Table 1    Comparative analysis of secure interval computing protocols
                                     表 1   保密区间计算协议间的对比分析
                  协议        解决问题的范围      是否彻底解决所提出的问题         是否需要调用百万富翁协议         是否是新问题
              文献[20]中的协议       有理数                9                    9               ×
              文献[21]中的协议      声称实数                ×                    ×               ×
                   Π 1         有理数                9                    ×               ×
                   Π 2         有理数                9                    ×               9
                   Π 3         有理数                9                    ×               9
             注:9表示具有某种性能,×表示不具有某种性能

         6    结束语

             本文首先提出数轴上的保密关系测定问题应当分为 3 个值得研究的子问题:(1)  点与区间关系的保密测定;
         (2)  多维点与区间保密关系测定;(3)  区间与区间关系的保密测定.然后采用“两个数的安全比值与 1 的关系判
         定两个数的大小”的方法,基于同态加密设计了 3 个高效的保密区间计算协议.最后,采用模拟范例(ideal/real)分
         析了 3 个协议的安全性.分析表明:(1)  这 3 个协议突破了 Paillier  等加密方案不能进行保密差值计算的瓶颈;(2)
         这 3 个协议还可以作为基础模块用于解决其他若干安全多方计算问题,例如保密点与圆环区域关系判定问题、
         点与凸多边形位置关系判定问题、保密近感探测问题等.而如何解决无理数轴上的一个无理数一次同时与两个
         无理数的安全比较依然是个开问题,需要进一步探索解决.

         References:
          [1]    Yao ACC. Protocols for secure computations. In: Proc. of the 23rd Annual Symp. on Foundations of Computer Science (SFCS’82).
             Washington: IEEE Computer Society Press, 1982. 160−164.
          [2]    Liu S, Qu Q, Chen L, Ni LM. SMC: A practical schema for privacy-preserved data sharing over distributed data streams. IEEE
             Trans. on Big Data, 2015,1(2):68−81.
          [3]    Xu L, Jiang C, Chen Y, Wang J, Ren Y. A framework for categorizing and applying privacy-preservation techniques in big data
             mining. Computer, 2016,49(2):54−62.
          [4]    Xu L, Jiang C, Wang J, Yuan J, Ren Y. Information security in big data: privacy and data mining. IEEE Access, 2014,2:1149−1176.
          [5]    Sharma S, Chen  K, Sheth A.  Toward practical privacy-preserving  analytics for IoT  and  cloud-based healthcare systems. IEEE
             Internet Computing, 2018,22(2):42−51.
          [6]    Zhang L, Li XY, Liu K, Jung T, Liu YH. Message in a sealed bottle: Privacy preserving friending in mobile social networks. IEEE
             Trans. on Mobile Computing, 2015,14(9):1888−1902.
          [7]    Zhang L, Jung T, Liu C, Li X, Liu Y. Pop: Privacy-preserving outsourced photo sharing and searching for mobile devices. In: Proc.
             of the 2015 IEEE 35th Int’l Conf. on Distributed Computing Systems. Washington: IEEE, 2015. 308−317.
          [8]    Saranya K, Premalatha K, Rajasekar SS. A survey on privacy preserving data mining. In: Proc. of the 2015  2nd Int’l  Conf. on
             Electronics and Communication Systems (ICECS). Washington: IEEE, 2015. 1740−1744.
          [9]    Boudot  F,  Schoenmakers B, Traore  J. A fair and efficient  solution to  the  socialist millionaires’  problem. Discrete Applied
             Mathematics, 2001,111(1-2):23−36.
         [10]    Fischlin M. A cost-effective pay-per-multiplication comparison method for millionaires. In: Proc. of the Cryptographers’ Track at
             the RSA Conf. Berlin, Heidelberg: Springer-Verlag, 2001. 457−471.
         [11]    Goldwasser S, Micali S. Probabilistic encryption. Journal of Computer and System Sciences, 1984,28(2):270−299.
         [12]    Ioannidis I, Grama A. An efficient protocol for Yao’s millionaires’ problem. In: Proc. of the 36th Annual Hawaii Int’l Conf. on
             IEEE. Washington: IEEE, 2003.
         [13]    Li SD, Dai YQ, You QY. Efficient solution to Yao’s Millionaires’ problem. Dianzi Xuebao (Acta Electronica Sinica), 2005,33(5):
             769−773 (in Chinese with English abstract).
         [14]    Lin HY, Tzeng WG. An efficient solution to the millionaires’ problem based on homomorphic encryption. In: Proc. of the Int’l Conf.
             on Applied Cryptography and Network Security. Berlin, Heidelberg: Springer-Verlag, 2005. 456−466.
         [15]    Garay J, Schoenmakers B, Villegas  J. Practical and secure solutions for integer comparison. In: Proc. of the Int’l Workshop on
             Public Key Cryptography. Berlin, Heidelberg: Springer-Verlag, 2007. 330−342.
         [16]    Li SD, Wang DS. Efficient secure multiparty computation based on homomorphic encryption. Dianzi Xuebao (Acta Electronica
             Sinica), 2013,41(4):798−803 (in Chinese with English abstract).
   295   296   297   298   299   300   301   302   303   304   305