Page 105 - 《软件学报》2020年第12期
P. 105
柏梦婷 等:行程时间预测方法研究 3771
[92] Hamner B. Predicting travel times with context-dependent random forests by modeling local and aggregate traffic flow. In: Proc. of
the IEEE Int’l Conf. on Data Mining Workshops. 2011. 1357−1359.
[93] Liaw A, Wiener M. Classification and regression by randomForest. R News, 2002,2(3):18−22.
[94] Yu B, Wang H, Shan W, Yao B. Prediction of bus travel time using random forests based on near neighbors. Computer-aided Civil
and Infrastructure Engineering, 2017,33(2):333−350.
[95] Gupta B, et al. Taxi Travel Time Prediction Using Ensemble-based Random Forest and Gradient Boosting Model. 2018.
[96] Wu X, Zhu X. Mining with noise knowledge: Error-aware data mining. IEEE Trans. on Systems, Man, and Cybernetics-Part A:
Systems and Humans, 2008,38(4):917−932.
[97] Qu L, Hu J, Li L, Zhang Y. PPCA-Based missing data imputation for traffic flow volume: A systematical approach. IEEE Trans. on
Intelligent Transportation Systems, 2009,10(3):512−522.
[98] Chen C, Wang Y, Li L, Hu J, Zhang Z. The retrieval of intra-day trend and its influence on traffic prediction. Transportation
Research Part C: Emerging Technologies, 2012,22(5):103−118.
[99] Tan H, Feng G, Feng J, Wang W, Zhang YJ, Li F. A tensor-based method for missing traffic data completion. Transportation
Research Part C: Emerging Technologies, 2013,28:15−27.
[100] Chang EP, Wang SH. Improved Freeway Incident Detection using Fuzzy Set Theory. 1994. 75−82.
[101] Stephanedes YJ, Liu X. Artificial neural networks for freeway incident detection. In: Proc. of the Transportation Research Record.
1995.
[102] Athanasios V, Nikolaos D, Anastasios D, Eftychios P. Deep learning for computer vision: A brief review. Computational
Intelligence and Neuroscience, 2018,2018:1−13.
[103] Yu D, Deng L. Automatic Speech Recognition: A Deep Learning Approach. Springer-Verlag, 2014.
[104] Xue-Feng Xi, Guo-Dong Z. A survey on deep learning for natural language processing. Acta Automatica Sinica, 2016 (in Chinese
with English abstract).
[105] Marlin BM, Swersky K, Bo C, Freitas ND. Inductive principles for restricted Boltzmann machine learning. Journal of Machine
Learning Research—Proc. Track for Artificial Intelligence and Statistics, 2010,9(9):509−516.
[106] Shi X, Chen Z, Wang H, Yeung DY, Wong WK, Woo WC. Convolutional LSTM network: A machine learning approach for
precipitation nowcasting. In: Proc. of the Int’l Conf. on Neural Information Processing Systems. 2015.
[107] Yuan Z, Zhou X, Yang T. Hetero-ConvLSTM: A deep learning approach to traffic accident prediction on heterogeneous spatio-
temporal data. In: Proc. of the 24th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. 2018. 984−992. [doi:
10.1145/3219819.3219922]
附中文参考文献:
[78] 王飞跃,段艳杰,吕宜生,等.一种基于 lstm 的路段行程时间预测方法.专利 CN106096767A,2016.
柏梦婷(1999-),女,学士,主要研究领域为 马萌(1986-),男,博士,副研究员,CCF 专
机器学习,深度学习在智能交通领域的 业会员,主要研究领域为物联网,智能感知
应用. 计算,复杂事件处理.
林杨欣(1992-),男,学士,主要研究领域为 王平 (1961- ),男 ,博士 ,教授 ,博 士生导
智能交通系统. 师,CCF 专业会员,主要研究领域为网络安
全,智能计算与感知,操作系统与中间件.