Page 105 - 《软件学报》2020年第12期
P. 105

柏梦婷  等:行程时间预测方法研究                                                                3771


         [92]     Hamner B. Predicting travel times with context-dependent random forests by modeling local and aggregate traffic flow. In: Proc. of
             the IEEE Int’l Conf. on Data Mining Workshops. 2011. 1357−1359.
         [93]     Liaw A, Wiener M. Classification and regression by randomForest. R News, 2002,2(3):18−22.
         [94]     Yu B, Wang H, Shan W, Yao B. Prediction of bus travel time using random forests based on near neighbors. Computer-aided Civil
             and Infrastructure Engineering, 2017,33(2):333−350.
         [95]     Gupta B, et al. Taxi Travel Time Prediction Using Ensemble-based Random Forest and Gradient Boosting Model. 2018.
         [96]     Wu X, Zhu X. Mining with noise knowledge: Error-aware data mining. IEEE Trans. on Systems, Man, and Cybernetics-Part A:
             Systems and Humans, 2008,38(4):917−932.
         [97]     Qu L, Hu J, Li L, Zhang Y. PPCA-Based missing data imputation for traffic flow volume: A systematical approach. IEEE Trans. on
             Intelligent Transportation Systems, 2009,10(3):512−522.
         [98]     Chen  C,  Wang Y, Li  L, Hu J, Zhang Z. The  retrieval  of  intra-day  trend and its  influence on  traffic  prediction. Transportation
             Research Part C: Emerging Technologies, 2012,22(5):103−118.
         [99]     Tan H,  Feng G, Feng  J, Wang W, Zhang YJ, Li  F. A tensor-based method  for missing traffic data completion. Transportation
             Research Part C: Emerging Technologies, 2013,28:15−27.
        [100]    Chang EP, Wang SH. Improved Freeway Incident Detection using Fuzzy Set Theory. 1994. 75−82.
        [101]    Stephanedes YJ, Liu X. Artificial neural networks for freeway incident detection. In: Proc. of the Transportation Research Record.
             1995.
        [102]    Athanasios V, Nikolaos D, Anastasios D, Eftychios P.  Deep learning for computer  vision: A  brief review. Computational
             Intelligence and Neuroscience, 2018,2018:1−13.
        [103]    Yu D, Deng L. Automatic Speech Recognition: A Deep Learning Approach. Springer-Verlag, 2014.
        [104]    Xue-Feng Xi, Guo-Dong Z. A survey on deep learning for natural language processing. Acta Automatica Sinica, 2016 (in Chinese
             with English abstract).
        [105]    Marlin BM, Swersky K, Bo C, Freitas ND. Inductive principles for restricted Boltzmann machine learning. Journal of Machine
             Learning Research—Proc. Track for Artificial Intelligence and Statistics, 2010,9(9):509−516.
        [106]    Shi X, Chen Z,  Wang H, Yeung DY, Wong  WK, Woo  WC. Convolutional LSTM  network: A machine learning approach for
             precipitation nowcasting. In: Proc. of the Int’l Conf. on Neural Information Processing Systems. 2015.
        [107]    Yuan Z, Zhou X, Yang T. Hetero-ConvLSTM: A deep learning approach to traffic accident prediction on heterogeneous spatio-
             temporal data. In: Proc. of the 24th ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. 2018. 984−992. [doi:
             10.1145/3219819.3219922]
         附中文参考文献:
         [78]  王飞跃,段艳杰,吕宜生,等.一种基于 lstm 的路段行程时间预测方法.专利 CN106096767A,2016.


                       柏梦婷(1999-),女,学士,主要研究领域为                      马萌(1986-),男,博士,副研究员,CCF 专
                       机器学习,深度学习在智能交通领域的                            业会员,主要研究领域为物联网,智能感知
                       应用.                                          计算,复杂事件处理.



                       林杨欣(1992-),男,学士,主要研究领域为                      王平 (1961- ),男 ,博士 ,教授 ,博 士生导
                       智能交通系统.                                      师,CCF 专业会员,主要研究领域为网络安
                                                                    全,智能计算与感知,操作系统与中间件.
   100   101   102   103   104   105   106   107   108   109   110