Page 61 - 《软件学报》2020年第11期
P. 61

陆璇  等:数据驱动的移动应用用户接受度建模与预测                                                       3377


                 中的丰富数据,刻画了移动应用软件生命周期不同阶段的重要特征.通过应用开发不同阶段的 3 个典型问题,讨
                 论了针对具体问题如何提取合适的用户接受度指标,并使用协同过滤、机器学习、概率模型等方法建立用户接
                 受度预测模型.使用大规模的真实数据,通过实验验证了这些指标的可预测性,分析了指标对开发过程的指导作
                 用.当然,由于应用市场中存在的用户数据类型繁多,开发者需要解决的问题多样,同时实际可获得的数据集有
                 限,本文给出的用户接受度指标模型尚不完备,选取的实例也未必能够充分代表开发者所遇到的实际问题.因
                 此,本文提出的用户接受度指标模型仍需要在实践中进一步扩展与完善.

                 References:
                 [1]    Jansen S, Bloemendal E. Defining app stores: The role of curated marketplaces in software ecosystems. In: Proc. of the Int’l Conf.
                     of Sofware Business. Berlin, Heidelberg: Springer-Verlag, 2013. 195−206.
                 [2]    Basole RC, Karla  J. On  the evolution  of mobile  platform ecosystem structure and  strategy. Business  &Information  Systems
                     Engineering, 2011,3(5):313−322.
                 [3]    Martin W, Sarro F, Jia Y, Zhang Y, Harman M. A survey of app store analysis for software engineering. IEEE Trans. on Software
                     Engineering, 2016,43(9):817−847.
                 [4]    AlSubaihin A, Sarro F, Black S, Capra L, Harman M. App store effects on software engineering practices. IEEE Trans. on Software
                     Engineering (Early Access), 2019. [doi: 10.1109/TSE.2019.2891715]
                 [5]    Sun Y, Guo B, Ouyang Y, Yu ZW, Wang Z. Strategies for mobile app evolution by using crowdsourced data. Journal of Frontiers
                     of Computer Science and Technology, 2020,14(1):40−50 (in Chinese with English abstract).
                 [6]    Liu X, Li H, Lu X, Xie T, Mei Q, Feng F, Mei H. Understanding diverse smarpthone usage patterns from large-scale appstore-
                     service profiles. IEEE Trans. on Software Engineering, 2018,44(4):384−411.
                 [7]    Zhang D, Dang Y, Lou JG, Han S, Zhang H, Xie T. Software analytics as a learning case in practice: Approaches and experiences.
                     In: Proc. of the Int’l Workshop on Machine Learning Technologies in Software Engineering. 2011. 55−58.
                 [8]    Zhang D, Han S, Dang Y, Lou JG, Zhang H, Xie T. Software analytics in practice. IEEE Software, 2013,30(5):30−37.
                 [9]    Zhang DM, Han S, Lou JG, Dang YN, Zhang HD, Xie T. Software analytics: Essence and practices. Communications of the CCF,
                     2014,10(3):29−36 (in Chinese with English abstract).
                [10]    Shen GH, Huang ZQ, Xie B, Zhu YQ, Liao LL, Wang F, Liu YL. Survey on software trustworthiness evaluation: Standards, models
                     and tools. Ruan Jian Xue Bao/Journal of Software, 2016,27(4):955−968 (in Chinese with English abstract). http://www.jos.org.cn/
                     1000-9825/5024.htm [doi: 10.13328/j.cnki.jos.005024]
                [11]    Hu TY, Jiang Y. Mining of user’s comments reflecting usage feedback for APP software. Ruan Jian Xue Bao/Journal of Software,
                     2019,30(10):3168−3185  (in Chinese with English abstract).  http://www.jos.org.cn/1000-9825/5794.htm [doi:  10.13328/j.cnki.jos.
                     005794]
                [12]    Lim SL,  Bentley  PJ,  Kanakam  N, Ishikawa F,  Honiden S. Investigating  country differences in  mobile  app user behavior  and
                     challenges for software engineering. IEEE Trans. on Software Engineering, 2015,41(1):40−64.
                [13]    Hoon L, Vasa R, Schneider JG, Grundy J. An analysis of the mobile app review landscape: Trends and implications. Technical
                     Report, Faculty of Information and Communication Technologies, Swinburne University of Technology, 2013.
                [14]    Hoon  L,  Vasa  R,  Martino GY, Schneider JG,  Mouzakis K. Awesome!  Conveying satisfaction on the  app store. In: Proc. of the
                     Australian Computer-Human Interaction Conf.: Augmentation, Application, Innovation, Collaboration. 2013. 229−232.
                [15]    Chen N, Lin J, Hoi SC, Xiao X, Zhang B. AR-miner: Mining informative reviews for developers from mobile app marketplace. In:
                     Proc. of the 36th Int’l Conf. on Software Engineering. 2014. 767−778.
                [16]    Xie Z, Zhu S. AppWatcher: Unveiling the underground market of trading mobile app reviews. In: Proc. of the 8th ACM Conf. on
                     Security and Privacy in Wireless Mobile Networks. 2015. 1−11.
                [17]    LiKamWa R, Liu Y, Lane ND, Zhong L. Moodscope: Building a mood sensor from smartphone usage patterns. In: Proc. of the 11th
                     Annual Int’l Conf. on Mobile Systems, Applications, and Services. 2013. 389−402.
                [18]    Rahmati A, Zhong L. Studying smartphone usage: Lessons from a four-month field study. IEEE Trans. on Mobile Computing, 2013,
                     12(7):1417−1427.
   56   57   58   59   60   61   62   63   64   65   66