Page 61 - 《软件学报》2020年第11期
P. 61
陆璇 等:数据驱动的移动应用用户接受度建模与预测 3377
中的丰富数据,刻画了移动应用软件生命周期不同阶段的重要特征.通过应用开发不同阶段的 3 个典型问题,讨
论了针对具体问题如何提取合适的用户接受度指标,并使用协同过滤、机器学习、概率模型等方法建立用户接
受度预测模型.使用大规模的真实数据,通过实验验证了这些指标的可预测性,分析了指标对开发过程的指导作
用.当然,由于应用市场中存在的用户数据类型繁多,开发者需要解决的问题多样,同时实际可获得的数据集有
限,本文给出的用户接受度指标模型尚不完备,选取的实例也未必能够充分代表开发者所遇到的实际问题.因
此,本文提出的用户接受度指标模型仍需要在实践中进一步扩展与完善.
References:
[1] Jansen S, Bloemendal E. Defining app stores: The role of curated marketplaces in software ecosystems. In: Proc. of the Int’l Conf.
of Sofware Business. Berlin, Heidelberg: Springer-Verlag, 2013. 195−206.
[2] Basole RC, Karla J. On the evolution of mobile platform ecosystem structure and strategy. Business &Information Systems
Engineering, 2011,3(5):313−322.
[3] Martin W, Sarro F, Jia Y, Zhang Y, Harman M. A survey of app store analysis for software engineering. IEEE Trans. on Software
Engineering, 2016,43(9):817−847.
[4] AlSubaihin A, Sarro F, Black S, Capra L, Harman M. App store effects on software engineering practices. IEEE Trans. on Software
Engineering (Early Access), 2019. [doi: 10.1109/TSE.2019.2891715]
[5] Sun Y, Guo B, Ouyang Y, Yu ZW, Wang Z. Strategies for mobile app evolution by using crowdsourced data. Journal of Frontiers
of Computer Science and Technology, 2020,14(1):40−50 (in Chinese with English abstract).
[6] Liu X, Li H, Lu X, Xie T, Mei Q, Feng F, Mei H. Understanding diverse smarpthone usage patterns from large-scale appstore-
service profiles. IEEE Trans. on Software Engineering, 2018,44(4):384−411.
[7] Zhang D, Dang Y, Lou JG, Han S, Zhang H, Xie T. Software analytics as a learning case in practice: Approaches and experiences.
In: Proc. of the Int’l Workshop on Machine Learning Technologies in Software Engineering. 2011. 55−58.
[8] Zhang D, Han S, Dang Y, Lou JG, Zhang H, Xie T. Software analytics in practice. IEEE Software, 2013,30(5):30−37.
[9] Zhang DM, Han S, Lou JG, Dang YN, Zhang HD, Xie T. Software analytics: Essence and practices. Communications of the CCF,
2014,10(3):29−36 (in Chinese with English abstract).
[10] Shen GH, Huang ZQ, Xie B, Zhu YQ, Liao LL, Wang F, Liu YL. Survey on software trustworthiness evaluation: Standards, models
and tools. Ruan Jian Xue Bao/Journal of Software, 2016,27(4):955−968 (in Chinese with English abstract). http://www.jos.org.cn/
1000-9825/5024.htm [doi: 10.13328/j.cnki.jos.005024]
[11] Hu TY, Jiang Y. Mining of user’s comments reflecting usage feedback for APP software. Ruan Jian Xue Bao/Journal of Software,
2019,30(10):3168−3185 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/5794.htm [doi: 10.13328/j.cnki.jos.
005794]
[12] Lim SL, Bentley PJ, Kanakam N, Ishikawa F, Honiden S. Investigating country differences in mobile app user behavior and
challenges for software engineering. IEEE Trans. on Software Engineering, 2015,41(1):40−64.
[13] Hoon L, Vasa R, Schneider JG, Grundy J. An analysis of the mobile app review landscape: Trends and implications. Technical
Report, Faculty of Information and Communication Technologies, Swinburne University of Technology, 2013.
[14] Hoon L, Vasa R, Martino GY, Schneider JG, Mouzakis K. Awesome! Conveying satisfaction on the app store. In: Proc. of the
Australian Computer-Human Interaction Conf.: Augmentation, Application, Innovation, Collaboration. 2013. 229−232.
[15] Chen N, Lin J, Hoi SC, Xiao X, Zhang B. AR-miner: Mining informative reviews for developers from mobile app marketplace. In:
Proc. of the 36th Int’l Conf. on Software Engineering. 2014. 767−778.
[16] Xie Z, Zhu S. AppWatcher: Unveiling the underground market of trading mobile app reviews. In: Proc. of the 8th ACM Conf. on
Security and Privacy in Wireless Mobile Networks. 2015. 1−11.
[17] LiKamWa R, Liu Y, Lane ND, Zhong L. Moodscope: Building a mood sensor from smartphone usage patterns. In: Proc. of the 11th
Annual Int’l Conf. on Mobile Systems, Applications, and Services. 2013. 389−402.
[18] Rahmati A, Zhong L. Studying smartphone usage: Lessons from a four-month field study. IEEE Trans. on Mobile Computing, 2013,
12(7):1417−1427.