Page 103 - 《软件学报》2020年第11期
P. 103
段旭 等:基于代码属性图及注意力双向 LSTM 的漏洞挖掘方法 3419
[12] Yamaguchi F, Lindner F, Rieck K. Vulnerability extrapolation: Assisted discovery of vulnerabilities using machine learning. In:
Proc. of the 5th USENIX Conf. on Offensive Technologies. 2011. 118−127.
[13] Feng Q, Zhou R, Xu C, Cheng Y, Testa B, Yin H. Scalable graph-based bug search for firmware images. In: Proc. of the 2016
ACM SIGSAC Conf. on Computer and Communications Security. 2016. 480−491.
[14] Xu X, Liu C, Feng Q, Yin H, Song L, Song D. Neural network-based graph embedding for cross-platform binary code similarity
detection. In: Proc. of the 2017 ACM SIGSAC Conf. on Computer and Communications Security (CCS 2017). 2017. 363−376.
[15] Li Z, Zou D, Xu S, Ou X, Jin H, Wang S, Deng Z, Zhong Y. VulDeePecker: A deep learning-based system for vulnerability
detection. In: Proc. of the 2018 Network and Distributed System Security Symp. 2018.
[16] Duan X, Wu J, Ji S, Rui Z, Luo T, Yang M, Wu Y. VulSniper: Focus your attention to shoot fine-grained vulnerabilities. In: Proc.
of the 28th Int’l Joint Conf. on Artificial Intelligence (IJCAI 2019). 2019. 4665−4671.
[17] Grieco G, Grinblat GL, Uzal L, Rawat S, Feist J, Mounier L. Toward large-scale vulnerability discovery using machine learning. In:
Proc. of the ACM Conf. on Data and Application Security and Privacy. 2016. 85−96.
[18] Kim J, Hubczenko D, Montague P. Towards attention based vulnerability discovery using source code representation. In: Proc. of
the Int’l Conf. on Artificial Neural Networks. 2019. 731−746.
[19] Russell R, Kim L, Hamilton L, Lazovich T, Harer J, Ozdemir O, Ellingwood P, Mcconley M. Automated vulnerability detection in
source code using deep representation learning. In: Proc. of the 17th IEEE Int’l Conf. on Machine Learning and Applications
(ICMLA). 2018. 757−762.
[20] Yu H, Lam W, Chen L, Li G, Xie T, Wang Q. Neural detection of semantic code clones via tree-based convolution. In: Proc. of the
27th Int’l Conf. on Program Comprehension. 2019. 70−80.
[21] Pham NH, Nguyen TT, Nguyen HA, Nguyen TN. Detection of recurring software vulnerabilities. In: Proc. of the Int’l Conf. on
Automated Software Engineering. 2010. 447−456.
[22] Li J, Ernst MD. CBCD: Cloned buggy code detector. In: Proc. of the Int’l Conf. on Software Engineering. 2012. 310−320.
[23] Chang RY, Podgurski A, Yang J. Discovering neglected conditions in software by mining dependence graphs. Trans. on Software
Engineering, 2008,34(5):579−596.
[24] Yamaguchi F, Golde N, Arp D, Rieck K. Modeling and discovering vulnerabilities with code property graphs. In: Proc. of the 2014
IEEE Symp. on Security and Privacy. 2014. 590−604.
[25] Chaudhari S, Polatkan G, Ramanath R, Mithal V. An attentive survey of attention models. arXiv preprint, arXiv: 1904.02874, 2019.
[26] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. Attention is all you need. In: Proc. of
the Advances in Neural Information Processing Systems. 2017. 5998−6008.
[27] Xu K, Ba JL, Kiros R, Cho K, Courville A, Salakhutdinov R, Zemel RS, Bengio Y. Show, attend and tell: Neural image caption
generation with visual attention. In: Proc. of the 32nd Int’l Conf. on Machine Learning, Vol.37. 2015. 2048−2057.
[28] Xiao T, Xu Y, Yang K, Zhang J, Peng Y, Zhang Z. The application of two-level attention models in deep convolutional neural
network for fine-grained image classification. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2015.
842−850.
[29] Jaderberg M, Simonyan K, Zisserman A, Kavukcuoglu K. Spatial transformer networks. In: Proc. of the Advances in Neural
Information Processing Systems. 2015. 2017−2025.
[30] Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, Wang X, Tang X. Residual attention network for image classification. In: Proc.
of the Computer Vision and Pattern Recognition. 2017. 6450−6458.
[31] Zhao B, Wu X, Feng J, Peng Q, Yan S. Diversified visual attention networks for fine-grained object classification. IEEE Trans. on
Multimedia, 2017,19(6):1245−1256.
[32] Mnih V, Heess N, Graves A. Recurrent models of visual attention. In: Proc. of the Advances in Neural Information Processing
Systems. 2014. 2204−2212.
[33] Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. The graph neural network model. IEEE Trans. on Neural Networks,
2009,20(1): 61−80.
[34] Choi E, Bahadori MT, Song L, Stewart WF, Sun J. GRAM: Graph-based attention model for healthcare representation learning. In:
Proc. of the 23rd ACM SIGKDD Int’l Conf. on Knowledge Discovery and Data Mining. 2017. 787−795.